
2013_09_04_MWSUG_abbrev_for_HOW.kmf
KM��Ž���“���252
3
%4MacroSkillsIn6Examples

1
332
1
238
/******MACROS Four Essential Skills in Six Examples--and some Hints ***
This program uses six examples to give an overview of four MACRO learning tasks.
Use these for goals/motivation.
They illustrate how to macro-ize common tasks and can provide structure to, and examples for, your self-learning.
Sometimes, the code below can be pasted into a program and modified.

Skills to learn are:
skill 1) Wrap a block of code (several procs/datasteps) in a macro, and then call it repeatedly with different parameters

Skill 2a) Automate a process (several procs/datasteps) using a macro and Proc SQL and %scan- NEW WAY
Skill 2b) Automate a process (several procs/datasteps) using a %do loop and && - old way;

*Skill 3 - conditionally execute code with an %if;

*Skill 4a - use a macro to create a code snippet (saving some typing and annoying your co-workers) - generate a list of numbers;
*Skill 4b - use a macro to create a code snippet (saving some typing and annoying your co-workers)- re-order variables alphabetically;

**/
/***
Skill 1_: Wrap a block of code (several procs/datasteps) in a macro and call it repeatedly with different parameters ;
**/
/*Manually submit a macro*/

%macro call_me(whereCL= /*a where clause without a semicolon */

);
/**wrap a bunch of code, with some common theme, inside a macro. Call it manually!!*/
proc means data=sashelp.class;
where &whereCL;
run;

proc chart data=sashelp.class;
vbar height;
where &whereCL;
run;

Proc plot data=sashelp.class;
plot age*height;
where &whereCL;
run;

Proc reg data=sashelp.class;
model height=age;
where &whereCL;
run;

%mend call_me;

%call_me(whereCL=%str(sex="M") /*a where clause without a semicolon */
);

%call_me(whereCL=%str(Age GT 14) /*a where clause without a semicolon */
);

%call_me(whereCL=%str(1=1) /*a where clause without a semicolon **A TIRC to remove a wher clause*/
);

/***
*Skill 2a) Automate a process (several procs/datasteps) using a macro and Proc SQL and %scan- NEW WAY ;
**/

/***************automate with sql**************************************/
options mlogic mprint symbolgen;

%macro automated(CoolVar= /*a numeric variable*/
);

Proc SQL;
title "we will print for the following values";
select distinct &CoolVar into :maclist separated by " "
from SAShelp.class
order by &coolvar ;
quit;
title "";

%put _user_;

%let counter=1;
%do %while(%Qscan(&maclist,&counter,%str()) NE);
%let ThisValue=%scan(&maclist,&counter,%str());
 proc print data=sashelp.class;
 where &CoolVar=&ThisValue;
 run;
 %let counter=%eval(&counter+1);
%end;

%mend automated;

%automated(CoolVar=age /*a numeric variable*/
);

%automated(CoolVar=height /*a numeric variable*/
);

/***
*Skill 2b) Automate a process (several procs/datasteps) using a %do loop and && - old way;
**/
Proc freq data=sashelp.class;
tables sex/out=sexfl(DROP= PERCENT COUNT);
run;

Data _null_;
set sexfl END=eof;
call symput("Sex"||put(_n_,1.),sex);

IF eof =1 THEN DO;
			call symput("MAXn",_n_);
			END;
run;
%put _user_;
%put _ALL_;

		%macro showMe;
		options nomprint nomlogic nosymbolgen;
		%do I=1 %to &MaxN;
		 %put &&sex&i ;
		%end;
		%mend showMe;
		%showme;

%macro Looper;
%do i=1 %to &mAXn;
options nocenter;
Proc Print data=sashelp.class;
where sex="&&Sex&i";
run;

options nocenter;
Proc MEANS data=sashelp.class;
where sex="&&Sex&i";
run;
%END;
%mend Looper;

OPTIONS SYMBOLGEN;
%Looper;

/***
*Skill 3 - conditionally execute code with an % if;
**/
options mlogic mprint symbolgen;

%macro Use_an_if(CoolVar= /*a variable*/
 ,NumVarYN= /*Numeric variable Yes or no? Value as Y or N */
);

%let NumVarYN=%upcase(&NumVarYN) ;

Proc SQL;
title "we will print for the following values";
select distinct &CoolVar into :maclist separated by " "
from SAShelp.class
order by &coolvar ;
quit;
title "";

%put _user_;

%let counter=1;
%do %while(%Qscan(&maclist,&counter,%str()) NE);
%let ThisValue=%scan(&maclist,&counter,%str());
 proc print data=sashelp.class;
 %if &NumVarYN=Y %then
 %do;
 where &CoolVar=&ThisValue;
 %end;
 %else %if &NumVarYN=N %then
 %do;
 where &CoolVar="&ThisValue";
 %end;
 run;
 %let counter=%eval(&counter+1);
%end;

%mend Use_an_if;

%Use_an_if(CoolVar=age /*a variable*/
 ,NumVarYN=Y /*Numeric variable Yes or no? Value as Y or N */
);

%Use_an_if(CoolVar=Sex /*a variable*/
 ,NumVarYN=N /*Numeric variable Yes or no? Value as Y or N */
);

/***
*Skill 4a - use a macro to create a code snippet (saving some typing and annoying your co-workers) - generate a list of numbers;
**/
options NOCENTER mlogic mprint symbolgen source2;

%macro lazy(start=1985, end=1991);
/*THIS IS REALY SILLY- I COULD HAVE WRITTEN THE MACRO TO GENERATE A NUMERIC SERIES, BUT THIS IS MORE COMPLEX and a better goal/example*/
 "&start"
	%let looplim=%eval(&start+1);
 %do i=&looplim %to &end;
 ,"&i"
 %end;
%mend lazy;

%lazy(start=1985, end=1991)

data FILTEREDctiyear;
set sashelp.Citiyr;
cDATE=PUT(DATE,year.);
/*THIS IS REALY SILLY- i COULD HAVE WRITTEN THE MACRO TO GENERATE A NUMERIC SERIES, BUT THIS IS MORE COMPLEX and a better goal/example*/
if cdate in(%LAZY()); /*the snippet is just a little bit of code imbedded in a program- by itself it will not run*/
run;

PROC PRINT DATA=FILTEREDctiyear;
RUN;

/***
*Skill 4b - use a macro to create a code snippet (saving some typing and annoying your co-workers)- re-order variables alphabetically;
**/
proc print data=sashelp.vcolumn;
title "just look at vcolumn, in case it is new to you";
where libname="SASHELP" and memname="CLASS" ;
run;

proc sql;
select distinct name into :varlist separated by ", "
 from SASHELP.vcolumn
 where upcase(name) NE "NAME" and libname="SASHELP" and memname="CLASS"
 order by name;
%put &varlist;

proc sql;
/*create table VarInOrder as*/
select name, &varlist /*the snippet is just a little bit of code imbedded in a program- by itself it will not run*/
from sashelp.class;
quit;
1
1
ô���252
3
%contents

1
332
1
39
%macro Contents(dsn=
 ,Delete=Y);
options ps=60;
proc format ;
 value vtype 1="Num "
 2="Char";
run;
proc contents data=&dsn
 out=Delete_this(Keep=varnum Memname name type length format label);
run;

proc report data=Delete_this nowd;
columns Memname name type length format varnum label ;
/*define varnum /order width=3 noprint;*/
define memname / width=32 flow noprint;
define name / order width=32 ;
define type / width=10 format=vtype.;
define length / width=8 ;
define format / width=10;
define label / width=50 flow;
define varnum / width=8;
run;

proc sql;
create table Delete_this as
select memname , name
 , put(type,vtype.) as var_type
 ,length ,format ,label
 from Delete_this;
 quit;

%if %upcase(&delete)=Y %then
 %do;
 proc delete data=Delete_this;
 quit;
 %end;
%mend Contents;
%Contents(dsn=CMD_SUM_CHILD_PAR_REV_20110510_A
 ,Delete=N);
269
1
Û���252
3
%DECILE

1
332
1
154
/***
Program: Deciling
Dev/Active/Inactive: XXXXXXX
Programmer: GA
Program Owner: Glenn Abrahamsen
Business Owner: Glenn Abrahamsen
Date Pgm. Started: long ago
Date Pgm. Finished: long ago
Client: utility macro
Study : N/A
Purpose: to bucket a file by the sum of a variable

Preceeding: Programs that must be run before this can be run
N/A

Concurrent: Programs that can be run concurrent with this
N/A

Following: Programs that Can only be run after this finishes
N/A

Driver files: External files containg metadata to control program execution
N/A

Infiles: perm files USED by this program
MacroParameter

Outfiles: perm files CREATED by this program
MacroParameter

Macros called: perm macros called by this program
N/A

Formats called: perm formats called by this program
N/A

Maintenance:
N/A
***/
%let InDSN=sashelp.Stocks; /*Input data set*/
%let AnVar=Volume ;/*Variable we wish to "bucket"*/
%let OutDSN=TradingDays_Deciled; /*Output data set w/ variables: decile_&anvar. Semi_decile_&anvar. Quartile_&anvar. */
	

%macro decile (InDSN= /*Input data set*/
 ,AnVar= /*Variable we wish to "bucket"*/
 ,OutDSN= /*Output data set w/ variables: decile_&anvar. Semi_decile_&anvar. Quartile_&anvar. */
);

PROC OPTSAVE out=ToRestore;
run;
options nocenter ls=200 ps=70 MPRINT ;
/* this macro creates decile_&anvar. semi_decile_&anvar. quintile_&anvar. */
/*~10 percent of the total for &AnVar will go into each decile, not ~10% of the obs*/

proc sort data = &InDSN.
 out = sorted;
 /*SORTING IS IMPORTANT TO ALLOW 10% OF VAR TOTAL TO GO INTO EACH BUCKET*/
 by &AnVar.;
run;

proc sql NoPrint; /*WE NEED THE TOTAL TO CALCULATE THE CUTPOINTS*/
 select sum(&AnVar.)
 ,sum(&AnVar in (.,0))
	,sum(&AnVar in (.,0))/count(*)
 ,count(*)
	into :DataSetTot , :NoOfMissing , :PctOfMissing , :NoOfRows
 from sorted;
quit;
%let DataSetTot = &DataSetTot;
%let NoOfMissing = &NoOfMissing;
%let PctOfMissing = &PctOfMissing;
%let NoOfRows = &NoOfRows;

data &OutDSN (drop =DataSetTot_&anvar. Var4ThisObs CumlVarTot);
 retain DataSetTot_&anvar. &DataSetTot CumlVarTot;
 set sorted;
 Var4ThisObs = &anvar.;
 CumlVarTot + Var4ThisObs;
 /*We are reading the file from small values of anVar to large*/
 /*assign Decile based on Pct of total of ANVar for the data set*/
 decile_&anvar. = Min(10,ceil(CumlVarTot /DataSetTot_&anvar. *10));
 semi_decile_&anvar. = Min(20,ceil(CumlVarTot /DataSetTot_&anvar. /.5 *10));
 quintile_&anvar. = Min(5,ceil(decile_&anvar./2));
 run;

/*lets see how well we did in our deciling?*/
proc summary data = &OutDSN nway missing;
 class decile_&anvar.;
 var &anvar.;
 output out = crunch (drop = _type_) sum=;run;

proc print data = crunch;
 title "The variable &AnVar has &NoOfMissing rows containing zero or missing in the &NoOfRows rows in &InDSN";
 title2 "So &PctOfMissing.% of the rows do not contribute to the total of the variable &AnVar";
 sum _Freq_ &anvar.;
 format _Freq_ &anvar. comma20.;
run;

proc tabulate data=&OutDSN missing /*Noseps *& format crams more data on a page*/;
 class decile_&anvar. Semi_decile_&anvar. Quintile_&anvar.;
 var &anvar.;
 table decile_&anvar. all
 ,&anvar.*(N*format=comma9.0 Sum*format=comma20.2 colpctN*format=7.2 colpctsum*format=7.2
 range*format=comma16.2 mean*format=comma16.2 min*format=comma16.2 max*format=comma16.2
		 P1*format=comma16.2 P5*format=comma16.2
 P95*format=comma16.2 P99*format=comma16.2)
 / rts=15
 box="Deciling &InDSN - Checking that the sum of &AnVar is evenly distributed in the decile and count of rows is skewed";
 table Semi_decile_&anvar. all
 ,&anvar.*(N*format=comma9.0 Sum*format=comma20.2 colpctN*format=7.2 colpctsum*format=7.2
 range*format=comma16.2 mean*format=comma16.2 min*format=comma16.2 max*format=comma16.2
		 P1*format=comma16.2 P5*format=comma16.2
 P95*format=comma16.2 P99*format=comma16.2)
 / rts=15
 box="Deciling &InDSN - Checking that the sum of &AnVar is evenly distributed in the Semi-Decile and count of rows is skewed";
 table Quintile_&anvar. all
 ,&anvar.*(N*format=comma9.0 Sum*format=comma20.2 colpctN*format=7.2 colpctsum*format=7.2
 range*format=comma16.2 mean*format=comma16.2 min*format=comma16.2 max*format=comma16.2
		 P1*format=comma16.2 P5*format=comma16.2
 P95*format=comma16.2 P99*format=comma16.2)
 / rts=15
 box="Deciling &InDSN - Checking that the sum of &AnVar is evenly distributed in the Quartile and count of rows is skewed";
 	 KEYLABEL
		N = "Count of Rows in &InDsn in this level of grouping"
		Sum ="Sum of the variable &AnVar in this level of grouping"
		colpctN ="% of the rows in the data set total in this level of grouping"
 colpctsum="% of the data set total for &AnVar in this level of grouping"
		Range="Range of the variable &AnVar in this level of grouping"
		mean="Mean average for value of the variable &AnVar in this level of grouping"
		Min="Min value of the variable &AnVar in this level of grouping"
		Max="Max value of the variable &AnVar in this level of grouping"
		P1="1% from smallest value of the variable &AnVar in this level of grouping"
		P5="5% from smallest value of the variable &AnVar in this level of grouping"
		P95="95% from smallest value of the variable &AnVar in this level of grouping"
		P99="99% from smallest value of the variable &AnVar in this level of grouping"
;
run;

PROC OPTLoad data=ToRestore;
run;

%mend decile;

/*An example so you can see output*/
%decile (InDSN=sashelp.Stocks /*Input data set*/
 ,AnVar=Volume /*Variable we wish to "bucket"*/
 ,OutDSN=TradingDays_Deciled /*Output data set w/ variables: decile_&anvar. Semi_decile_&anvar. Quartile_&anvar. */
);

15
1
½���252
3
%Diskuse

1
332
1
29
RSubmit;
options mcompilenote=all;
%let in="USER","TMPPROJ","TMPSTR";
%put ∈

proc sql flow =20;
/*validate*/
create table _XXKILL as
 select libname
 ,sum(NObs*obsLen)/(1024*1024*1024) as GBytes format=comma20.
 ,sum(NObs*obsLen)/(1024*1024) as MBytes format=comma20.
 ,sum(NObs*obsLen)/(1024) as KBytes format=comma20.
 ,sum(NObs*obsLen) as Bytes format=comma20.
 from sashelp.vtable
 where upcase(libname) in(&in) and upcase(typemem)="DATA"
 group by Libname;
;quit;

proc print data=_XXKILL;
sum _Numeric_;
run;

proc sql;
drop table _XXKILL;
quit;

EndRSubmit;
293
1
Sm��252
3
%Write2Excel

1
332
1
577
/**
NOTE: NOTE: NOTE: NOTE: NOTE: What you see in DOS windows in not what DOS sees.
 C:\Program Files\Microsoft Office\Office10\EXCEL.EXE"
 is seen, by DOS, as :
 C:\Progra~1\Micros~2\Office10\EXCEL.EXE;
The command x "C:\Program Files\Microsoft Office97\Office\EXCEL.EXE"; WILL NOT START EXCEL
The real DOS path can not contain directory names longer than 8 characters.
The real DOS path often has ~ in it. Your path may differ from the ones in this paper.
YOU MUST FIND THE PATH TO YOUR OWN EXCEL.EXE use the dos window and run dir /X to see the names that DOS sees
***/

/**
NOTE: NOTE: NOTE: NOTE: This, at the last call, writes some information to a "summary sheet"
 Please see the section that starts with
 %if (&SaveNowYN =Y) %then
 This is an illustration of a common task - writing to a summary sheet.
 The code in this section of the program does not useful work, but is for illustration only.
 It is very unlikely that this code, as is stands, meets your needs.
 Please feel free to delete this if it is not needed
 or to modify the code to meet your needs
***/

/***
NOTE: NOTE: NOTE: NOTE: NOTE:
An earlier AND SIMPLER version of this code, without paramter checking,
 is described in a paper that can be found at:
http://www.lexjansen.com/phuse/2010/cc/cc01.pdf
Frankly, since ive used this enough to fix it, I prefer the code without the error checking
***/

/***
Program: %Write2ExcelV4
Dev/Active/Inactive: Active
Programmer: rl
Program Owner: TheSASCommunity
Business Owner: TheSASCommunity
Date Pgm. Started: XXXXXXXXXX
Date Pgm. Finished: XXXXXXXXXX
Client: TheSASCommunity
Study : XXXXXXXXXX
Purpose: Write SAS files to Excel using DDE - automatically dimension writing area

Preceeding: Programs that must be run before this can be run
N/A

Concurrent: Programs that can be run concurrent with this
N/A

Following: Programs that Can only be run after this finishes
N/A

Driver files: External files containg metadata to control program execution
Parameters

Infiles: perm files USED by this program
Parameters

Outfiles: perm files CREATED by this program
Parameters

Macros called: perm macros called by this program
none

Formats called: perm formats called by this program
none

Maintenance:
Date: XX/XX/XXXX Programmer: XX Issue: XXXXXXXXXXXXXXXXXXX
Date: XX/XX/XXXX Programmer: XX Issue: XXXXXXXXXXXXXXXXXXX
Date: XX/XX/XXXX Programmer: XX Issue: XXXXXXXXXXXXXXXXXXX

***/
%macro skip; /*Use these lines for createing global macro values debugging or learning the code*/
options mprint mcompilenote=all source source2;

/*Set global macro variables so a new user can step throught The code*/
%let FirstWrite=Y; /*A Y here will cause SAS to start Excel.
 AND MUST be valued as Y for the Macro to open an Excel template
 - used for first call fo XLS sheet*/
%let SASFile=SASHelp.class; /*File to send to the XLSDataTab Xls sheet*/
%let whereClause=%str(where Sex="F";); /*a complete where statement with semicolon*/
 /*eg: %str(where 1=1;) */
%let DropVars=%str((drop=sex)); /*a complete "drop data set option" with
 /* ()and withOUT semicolon eg; (drop=SortOrder4Prod) */
%let XLSDataTab=Sheet2; /*Tab to which to write the table in SASFile*/
%let XLSSmryTab=Sheet1; /*Often,at the end of loading a template,
 we write one or two pieces of info to a summary tab*/
%let StartRowNo=5; /*You do not have to start writing in R1C1 -Look at the template-*/
 /*See where the data section starts*/
%let StartColNo=1; /*You do not have to start writing in R1C1 -Look at the template-*/
 /*See where the data section starts- sometimes we start at column 2*/
	%let templateLoc=;
	%let templateLoc=%str(C:\test\template.xls);
	 /*path to the template. If you value this AND set firstWrite to Y */
	 /*, the macro will open the template*/
	%let SaveNowYN=Y; /*Saves & Closes Excel. After writing last tab in a multi-tab SS, */
	%let NewName= ; /*change to Y & enter path in NewName*/
	%let NewName=C:\Test\Girls.xls; /*save the XLS sheet under this name. */

%mend skip;

%MACRO Write2XlsV4(/*Write ONE SAS file to ONE Tab of an Excel Workbook*/
FirstWrite= /*A Y here will cause SAS to start Excel.
 AND MUST be valued as Y for the Macro to open an Excel template
 - used for first call fo XLS sheet*/
,SASFile= /*File to send to the XLSDataTab Xls sheet*/
,whereClause= /*a complete where statement eg: %str(where 1=1;) */
,DropVars= /*a complete "drop data set option" with
 and withOUT semicolon eg; (drop=SortOrder4Prod) */
,XLSDataTab= /*Tab to which to write the table in SASFile*/
,XLSSmryTab= /*Often,at the end of loading a template,
 we write one or two pieces of info to a summary tab*/
,StartRowNo=5 /*You do not have to start writing in R1C1 -Look at the template-*/
 /*See where the data section starts*/
,StartColNo=1 /*You do not have to start writing in R1C1 -Look at the template-*/
 /*See where the data section starts- sometimes we start at column 2*/
,templateLoc= /*path to the template. If you value this AND set firstWrite to Y*/
 /*, the macro will open the template*/
,SaveNowYN=N /*Saves & Closes Excel. After writing last tab in a multi-tab SS,*/
 /*change to Y & enter path in NewName*/
,NewName=C:\Temp\DashBoard.xls /*save the XLS sheet under this name.
 Saving only happens when SaveNowYN=Y */
,DebugYN=Y /*If DebugYN is Y, then files are not deleted and additaion output is sent to the log*/
);

/*many parameters are not required and do not need flags*/
%local FirstWriteFL SASFileFl XLSDataTabFl StartRowNoFl StartColNoFl TemplateLocFl
 SaveNowYNFl FrstAndTempFl SaveAndNameFl DebugYNFl;
%let FirstWrite=%upcase(&FirstWrite);
%let SaveNowYN =%upcase(&SaveNowYN);
%let DebugYN =%upcase(&DebugYN);

/*Initialize local macro variables*/
%let FirstWriteFL =N;
%let SASFileFL =N;
%let XLSDataTabFl =N;
%let StartRowNoFl =N;
%let StartColNoFl =N;
%let TemplateLocFl=N;
%let SaveNowYNFl =N;
%let FrstAndTempFl=N;
%let SaveAndNameFl=N;
%let DebugYNFl =N;

/***
Section: Check Parameter Section
**/

/*Check FirstWrite Y N */
 %if (&FirstWrite NE Y) And (&FirstWrite NE N) %then
	%do;/*A data set name was not entered - it should be*/
 	 %let FirstwriteFL=Y;
 	%end;

	/*WhereClause is not needed. Check might be included in future release*/
	/*Dropvars are not needed. Check might be included in future release */

%if %sysfunc(exist(&SASFile)) =0 %then %let SASFileFl=Y; /*Does SAS file exist*/

%if &XLSDataTab = %then
	%do;/*An XLS tab was not entered - it should be*/
 	 %let XLSDataTabFl=Y;
 	%end;

	/*Check XLSSmryTab Is optional at any particular call. Check might be included in future release*/

%if &StartRowNo = %then
	%do;/*A starting row was not entered - it should be*/
 	 %let StartRowNoFl=Y;
 	%end;
%if &StartColNo = %then
	%do;/*A starting Column was not entered - it should be*/
 	 %let StartColNoFl=Y;
 	%end;

/*if no template specified, write to the sheet that opens when we open excel*/
%if (%length(&TemplateLoc) NE 0) %then
	%do;/*ONLY If a template location is entered, the template must exist*/
		%if %sysfunc(FileExist(&TemplateLoc)) =0 %then %let TemplateLocFl=Y;
 	%end;

%if &SaveNowYN = Y or &SaveNowYN = N %then
	%do;/*Should be Y or N */
 	 %let SaveNowYNFl=N;
 	%end;
 %Else %let SaveNowYNFl=Y;

/*If FirstWrite =Y , then templateloc must be valued*/
%if (&FirstWrite = Y) and (&templateloc =) %then %let FrstAndTempFl=Y;

/*If SaveNowYN is Y then NewName must be valued*/
%if ((&SaveNowYN = Y) and (&NewName =)) %then %let SaveAndNameFl=Y;

/*Check DebugYN Y N */
 %if (&DebugYN NE Y) And (&DebugYN NE N) %then
	%do;/*A data set name was not entered - it should be*/
 	 %let DebugYNFL=Y;
 	%end;

%macro ExtraInfo;
 %Put ***;
	%put FirstWriteFL =&FirstWriteFL ;
	%put SASFileFL =&SASFileFL ;
	%put XLSDataTabFl =&XLSDataTabFl ;
	%put StartRowNoFl =&StartRowNoFl ;
	%put StartColNoFl =&StartColNoFl ;
	%put TemplateLocFl =&TemplateLocFl ;
	%put SaveNowYNFl =&SaveNowYNFl ;
	%put FrstAndTempFl =&FrstAndTempFl ;
	%put SaveAndNameFl =&SaveAndNameFl ;
	%let DebugYNFl =&DebugYNFl;
	%Put ***;
%mend ExtraInfo;
%if &debugYN = Y %then
	%do;
	 %ExtraInfo
	%end;

%put ***;
%If &FirstWriteFL =Y or &SASFileFL =Y or &XLSDataTabFl=Y or &StartRowNoFl =Y
 or &StartColNoFl =Y or &TemplateLocFl=Y or &SaveNowYNFl =Y or &FrstAndTempFl=Y
 or &SaveAndNameFl=Y or &&DebugYNFl =Y %THEN %DO;

 %put _user_;

	 data _null_; /*lines go out about 135 columns - sorry about that*/
	 Put "***";
 Put "In &SysMacroName, execution is terminating due to problems with parameters." ;
	 %if &FirstWriteFL =Y %then put "ER" "ROR: The parameter (FirstWrite) should be Y or N. It is: &FirstWrite"; ;
	 %if &SASFileFL =Y %then put "ER" "ROR: The parameter (SASFileFL) could not be found. Does &SASFile exist?"; ;
	 %if &XLSDataTabFl=Y %then put "ER" "ROR: The parameter (XLSDataTabFl) is valued as: &XLSDataTabFl"; ;
	 %if &StartRowNoFl =Y %then put "ER" "ROR: The parameter (StartRowNo) must exist. It is incorrectly valued as: &StartRowNo"; ;
	 %if &StartColNoFl =Y %then put "ER" "ROR: The parameter (StartColNo) must exist. It is incorrectly valued as: &StartColNo"; ;
	 %if &TemplateLocFl=Y %then put "ER" "ROR: Can not file the file in the parameter (TemplateLoc) Check: &TemplateLoc"; ;
	 %if &SaveNowYNFl =Y %then put "ER" "ROR: The parameter (SaveNowYN) should be Y or N. It is: &SaveNowYN"; ;
	 %if &FrstAndTempFl=Y %then put "ER" "ROR: If FirstWrite is Y, then TemplateLoc must be valued"; ;
	 %if &SaveAndNameFl=Y %then put "ER" "ROR: If SaveNowYN is Y, then NewName must be valued; "; ;
	 %if &DebugYNFl =Y %then put "ER" "ROR: The parameter (DebugYN) should be Y or N. It is: &DebugYN"; ;
	 Put "***";
	 run;

 %goto SkipCode; /*Skip the code - no need to run anything*/
	%End;
 %else %do;

		 	 data _null_;
			 Put "***";
			 Put "In &SysMacroName, the parameters passed the implemented checks";
	 put " Executing code ";
			 put " FirstWrite = &FirstWrite";
			 put " SASFile = &SASFile ";
			 put " WhereClause=%NRBQuote(&whereClause)";
			 put " DropVars = &DropVars";
			 put " XLSDataTab = &XLSDataTab";
			 put " XLSSmryTab = &XLSSmryTab ";
			 put " StartRowNo = &StartRowNo ";
			 put " StartColNo = &StartColNo";
			 put " TemplateLoc= &TemplateLoc";
			 put " SaveNowYN = &SaveNowYN";
			 put " NewName = &NewName";
			 put " DebugYN = &DebugYN";	
			 Put "***";
 run;
 %end;

/***
Section: Save environment so it can be restored
**/
PROC OptSave out=_M_OptsBefore ; /*save environment (most options)*/
 run;
 /*Save titiles and footnotes and restore then when you close*/
options mcompilenote=all mlogic mprint source source2 nocenter;

Proc SQL;/*If you really want to be fussy, be sure that _M_titles does not already exist- see below*/
 	Create table _M_titles as
	 select Type, number, text
 from sashelp.vtitle
	 where upcase(type)="T";
Proc SQL;/*If you really want to be fussy, be sure that _M_footers does not already exist- see below*/
 	Create table _M_footers as
	 select Type, number, text
 from sashelp.vtitle
	 where upcase(type)="F";
	quit;

%if &DebugYN = Y %then
 %do;
 	 options Mprint Mlogic Symbolgen nocenter LS=120 source source2;
 %end;
%Else
 %do;
	 options Mprint NoMlogic NoSymbolgen;
 %end;

/*this program is written in many Sub-macros so you can step through the program*/
/***
Section : Do actual work Below
**/
%macro OpenExcel;
%if (&FirstWrite =Y)%then /*This is the first time we write to the XLS sheet - we need to open it*/
	%do;
	 options noxwait noxsync; /*Tells SAS not to wait for DOS commans to execute*/
	 /* NOTE: A command like the one below will not start excel!
	 x "C:\Program Files\Microsoft Office97\Office\EXCEL.EXE";
	 You Must use the command dir /X to see the real paths that DOS uses */

	 *x "C:\Progra~1\MIFF2D~1\Office\EXCEL.EXE"; /*Path to excel on one of my laptops - Likely NOT to your Excel*/
	 * X "C:\Progra~1\MICROS~3\MICROS~3.lnk"; /*Path to excel on a different one of my laptops - Likely NOT to your Excel*/
	 * "C:\Program Files\Microsoft Office\Office10\EXCEL.EXE" TURNS INTO: C:\Progra~1\Micros~2\Office10\EXCEL.EXE;
	 x "C:\Progra~1\Micros~2\Office10\EXCEL.EXE";

	 DATA _NULL_;
	 Rc = SLEEP(5);
	 RUN;
	%end;
%mend OPenExcel;
%OpenExcel;

%macro OpenTemplate;
 /*This macro can be used to write to several pages to a new SS, or template,
 and we ONLY open the Template under tow coinditions:
 1) on the first call and 2) if it the user has specified a template
 - We Must tell the macro if this is the first call and if the template was specified*/
 /*If you ask Excel to open the template and it does not exist, Excel will tell you via a message box*/
 %if ((%length(&templateLoc) GT 0) /*if GT 0, User has specified a template*/
 and (&FirstWrite =Y)
) %then
	%do; /*if above is true, user has specified a template to which he wants to write*/
		/*if no template specified, write to the sheet that opens when we open excel*/
		Filename Excel dde 'EXCEL|SYSTEM';
		data _null_;
		file excel;
		put "[open(""&TemplateLoc"")]";
		run;
	%end;
 %else
	%do;
		%put No template specified;
	%end;
%mend OpenTemplate;
%OpenTemplate;

%macro CleanUp; /*If they exist, remove working files before running again - defensive coding*/
	%if %sysfunc(exist(GoodObs))NE 0 %then
		%do;
			Proc SQL;
			Drop table _M_GoodObs;
			Drop table _M_VarsToExport;
			quit;
		%end;
	%else
		%do;
			%put NO table cleanup required - no table to drop;
		%end;
%mend CleanUp;
%cleanUp;

/*We might want to filter observations on a variable we do not want to send to Excel*/
/*So we filter observations ASAP and drop variables in the next step*/
Data _M_GoodObs&DropVars; /* the parameter might be: DropVars=%str((drop=sex));*/
	set &SASFile;
	&whereClause; /*<----- Drop rows you do NOT want to print*/
	/*This, and multiple calls of the macro,
	can be used to split files that are too large (GT 66K rows) to fit on an XLS sheet
	into smaller files that can we written to different sheets */
run;

/*For the DDE, we need to know how many obs and variables are in the file we are exporting.
Put the number of rows and columns we want to write into macro variables so we can dimension the DDE writing area*/
/*Note &DropVars above. You do not have to export all the variables */
Proc Contents data=_M_GoodObs varnum noprint
	out=_M_VarsToExport ;
run;/* create data set with variables info--*/

Proc Sort data=_M_VarsToExport ;
	by varnum;
run;

Data _null_; /*put # of vars. to export in a macro var- This number is used to dimension the DDE "writing" area*/
	if 0 then set _M_VarsToExport Nobs=NOfObs;
	call symput("NoOfVars",Strip((put(NOfObs,best12.))));
run;
%put We have &NoOfVars Variables to export from &&SASFile ;

Data _null_; /*in the DDE, We need to be able to loop and "write" the names of the variables*/
	set _M_VarsToExport(keep=name); /*create an array of macro variables*/
	call symput("vn"||left(Put(_n_,7.)),name); /*DANGER! hardcode of format*/
run;

%macro LeaveRecord; /*As a debugging tool, write the variables we want to export in the log*/
 %put ;
 %put We are going to use a macro loop to write variables in a put statement for DDE;
	%do QC=1 %to &NoOfVars;
		%put for loop number &qc the variable we write is &&vn&QC;
	%end;
%mend LeaveRecord;
%if &debugYN =Y %then
	%do;
	 %LeaveRecord; /*leave a record of what we plan to do*/
	%end;

Data _null_; /*Put # of rows in macro- This number is used to dimension the DDE "writing" area */
	if 0 then set _M_GoodObs Nobs=NOfObs;
	call symput("NoOfRows",Strip(NOfObs));
	If NOfObs GT 3 then
	do; /*DANGER HARDCODED NOTE*/
		put "*************************";
		put "WA" "RNING ** some version of Excel can hold only 66,000 rows";
		put "There are " NOfObs " rows in this file.";
		put " Check to see if this might fill up an XLS sheet";
		put "*************************";
	end;
run;
%put After applying the where clause, we want to print &NoOfRows rows from the file &SASFile;

/*Immediately below is the main trick of the program - use macro vars & %eval to dim the writing area*/
filename blah dde
"excel|&XLSDataTab!R&StartRowNo.C&StartColNo.:R%eval(&StartRowNo+&NoOfRows)C%eval(&StartColNo+&NoOfVars)" NOTAB;
/* in statement above, we dimensioned the DDE "writing" area */

Data _null_; /*this data null reads the GoodObs table and does the writing to excel*/
	set _M_GoodObs;
	file blah LRECL=2050;
	/*The value of Lrecl can range from 1 to 1,048,576 (1 megabyte). According to the
	experience of SAS experts, an Lrecl of 8192 covers 99% of the cases that most
	SAS programmers encounter. */
	%macro LoopOverVars; /*use a loop to list all the variable names in the DDE statement*/
		put %do k=1 %to &NoOfVars;
			&&vn&k "09"X /*This writes the put statement*/
			%end ;
	%mend LoopOverVars;
	%LoopOverVars;
run;

%if (&SaveNowYN =Y) %then
	%do; /*If you tell the macro you have written the last data tab, it will
		1)** Write any information to the "summary sheet"
		2)** Put the date in Cell A2 of Sheet 1
		3)** Save the file under a new name */
		Filename Sumry dde "excel|&XLSSmryTab!R1C1:R3C2" NOTAB; /*HARDCODED range*/
		/*This writing should not Ã¢â‚¬Â�Overlap" the range where we write data*/
		Data _null_; /*HARDCODE -AS EXAMPLE *We write the 6 cells below into a 3 by 2*/
			file Sumry LRECL=2050;
			Put "Put in Cell A1" "09"X "Put in Cell A2" "09"X ;
			Put "Run On:" "09"X "%sysfunc(Date(),worddate18.)" "09"X ;
			Put "Put in Cell A3" "09"X "Put in Cell B3" "09"X ;
			run;
			Filename Final dde "excel|&XLSSmryTab!R1C1:R1C1" NOTAB; /*HARDCODE*/
			/*(above) Make &XLSSmryTab active before saving then (below)Save and rename*/
			filename outexcel dde "EXCEL|SYSTEM";
			data _null_;
			file outexcel;
			put "[save.as(""&NewName"")]";
			put "[close]";
			put "[quit]";
		run;
	%end;

 /*Restore environment**/
 PROC OptLoad Data=_M_OptsBefore ;
 run;

 data _Null_;
 set _M_titles;
 call execute("title"||Strip(number)||" "||'"'||strip(text)||'";');
 run;

 data _null_;
 set _M_footers;
 call execute("Footnote"||Strip(number)||" "||'"'||strip(text)||'";');
	run;

 %if &DebugYN = N %then
 	%do; /*Delete the working files*/
		proc sql Noprint;
		select memname into :MacroTables separated by ' '
		from dictionary.tables
 	where libname="WORK" and substr(memname,1,3) = "_M_" ;
 	quit;

 	Proc datasets lib=work;
	 	delete &MacroTables;
	 	quit;
	%end;

 %SkipCode: /*This line is the destination if there is a problem wiht parameters*/
 %Put The macro (&sysmacroname) is ending at %sysfunc(Date(),worddate18.);
%Mend Write2XlsV4;

/*EXAMPLE MACRO CALLS TO ILLUSTRATE USE OF MACRO*/
%Write2XlsV4(/*Write ONE SAS file to ONE Tab of an Excel Workbook*/
	FirstWrite=Y 						/*A Y here will cause SAS to start Excel.
										AND MUST be valued as Y for the Macro to open an Excel template
										- used for first call fo XLS sheet*/
	,SASFile=SASHelp.class 				/*File to send to the XLSDataTab Xls sheet*/
	,whereClause=%str(where sex="F";) 	/*a complete where statement eg: %str(where 1=1;) */
	,DropVars=%str((drop=sex)) 			/*a complete "drop data set option" with ()*/
										/*and withOUT semicolon eg; (drop=SortOrder4Prod) */
	,XLSDataTab=Sheet2 					/*Tab to which to write the table in SASFile*/
	,XLSSmryTab= 						/*Often,at the end of loading a template, */
										/*we write one or two pieces of info to a summary tab*/
	,StartRowNo=5 						/*You do not have to start writing in R1C1 */
										/* -Look at the template- See where the data section starts*/
	,StartColNo=1 						/*You do not have to start writing in R1C1 -Look at the template- */
										/*See where the data section starts- sometimes we start at column 2*/
	,templateLoc=%str(C:\test\template.xls)
										/*path to the template. If you value this AND set firstWrite to Y*/
										/* the macro will open the template*/
	,SaveNowYN=N 						/*Saves & Closes Excel.*/
										/*After writing last tab in a multi-tab SS,*/
										/*change to Y & enter path in NewName*/
	,NewName= 							/*save the XLS sheet under this name.*/
										/*Saving only happens when SaveNowYN=Y */
 ,DebugYN=N
);

/*EXAMPLE MACRO CALLS TO ILLUSTRATE USE OF MACRO*/
%Write2XlsV4(/*Write ONE SAS file to ONE Tab of an Excel Workbook*/
	FirstWrite=N 						/*A Y here will cause SAS to start Excel.
										AND MUST be valued as Y for the Macro to open an Excel template
										- used for first call fo XLS sheet*/
	,SASFile=SASHelp.class 				/*File to send to the XLSDataTab Xls sheet*/
	,whereClause= 	 /*a complete where statement eg: %str(where 1=1;) */
	,DropVars= 			 /*a complete "drop data set option" with ()*/
										/*and withOUT semicolon eg; (drop=SortOrder4Prod) */
	,XLSDataTab=Sheet1 					/*Tab to which to write the table in SASFile*/
	,XLSSmryTab= 						/*Often,at the end of loading a template, */
										/*we write one or two pieces of info to a summary tab*/
	,StartRowNo=10 						/*You do not have to start writing in R1C1 */
										/* -Look at the template- See where the data section starts*/
	,StartColNo=2 						/*You do not have to start writing in R1C1 -Look at the template- */
										/*See where the data section starts- sometimes we start at column 2*/
	,templateLoc=
										/*path to the template. If you value this AND set firstWrite to Y*/
										/* the macro will open the template*/
	,SaveNowYN=N 						/*Saves & Closes Excel.*/
										/*After writing last tab in a multi-tab SS,*/
										/*change to Y & enter path in NewName*/
	,NewName= 							/*save the XLS sheet under this name.*/
										/*Saving only happens when SaveNowYN=Y */
 ,DebugYN=N
);

%Write2XlsV4(/*Write ONE SAS file to ONE Tab of an Excel Workbook*/
	FirstWrite=N 						/*A Y here will cause SAS to start Excel.
										AND MUST be valued as Y for the Macro to open an Excel template
										- used for first call fo XLS sheet*/
	,SASFile=SASHelp.class 				/*File to send to the XLSDataTab Xls sheet*/
	,whereClause=%str(where sex="M";) 	/*a complete where statement eg: %str(where 1=1;) */
	,DropVars=%str((drop=sex)) 			/*a complete "drop data set option"*/
										/* with () and withOUT semicolon eg; (drop=SortOrder4Prod) */
	,XLSDataTab=Sheet3 					/*Tab to which to write the table in SASFile*/
	,XLSSmryTab=Sheet1 					/*Often,at the end of loading a template,
										we write one or two pieces of info to a summary tab*/
	,StartRowNo=5 						/*You do not have to start writing in R1C1 -Look at the template-*/
										/*See where the data section starts*/
	,StartColNo=1 						/*You do not have to start writing in R1C1 -Look at the template-*/
										/*See where the data section starts- sometimes we start at column 2*/
	,templateLoc= 						/*path to the template. If you value this AND set firstWrite to Y */
										/*, the macro will open the template*/
	,SaveNowYN=Y 						/*Saves & Closes Excel. After writing last tab in a multi-tab SS,*/
										/*change to Y & enter path in NewName*/
	,NewName=C:\Test\GirlsAndBoys.xls 	/*save the XLS sheet under this name.*/
										/* Saving only happens when SaveNowYN=Y */
);

270
1
4���252
3
%Xls_libname

1
332
1
181
/***
Section __: Use this code for liibname engine
http://www2.sas.com/proceedings/sugi31/024-31.pdf

WHAT CAN SAS DO VIA THE EXCEL ENGINE?
The SAS libname engine has the capacity to:
Â· Create new workbooks.
Â· Create a new spreadsheet with a named range and write data to the range on the spreadsheet.
Â· Write data to an EMPTY existing named range.
Â· Append data to spreadsheet data or named range data.
Â· Read data from a pre-existing spreadsheet.
Â· Read data from a pre-existing named range.
Â· Delete all the data from a spreadsheet.
Â· Delete all data from a named range.
Â· Do the above without Excel on the PC.

The SAS libname engine DOES NOT have the capacity to:
Â· Rename spreadsheets within a workbook.
Â· Delete spreadsheets from a workbook.
Â· DELETE WORKBOOKS AS A WHOLE.
Â· CHANGE OR APPLY FORMATTING.
Â· Delete cells containing formulas.
Â· Write a formula into a cell.

WHAT IS THAT â€œ$â€� CHARACTER?
Looking at SAS Explorer it may be surprising that each dataset written to
Excel appears twice, once with the expected name and once with a trailing â€œ$â€�.

Unlike a typical data source, data in an Excel spreadsheet need not be leftand top aligned.
For this Excel has named ranges which allow data to be placed anywhere inside a spreadsheet.
By default SAS reads and writes data from named ranges on spreadsheets, but will also read spreadsheet
data directly in the absence of a named range.

When a new SAS dataset is created in an Excel library, SAS creates both aspreadsheet and a named range.
Each is given the same name, with the spreadsheet denoted by a trailing â€œ$â€�.

In the example at right CLASS is the named range created by the Excel engine
 and CLASS$ is the spreadsheet created by the Excel engine to hold the named range.
Within SAS, the named range is referred to as Wrkbk.CLASS,
 and the spreadsheet is referenced using the name literal Wrkbk.â€™CLASS$â€™n.
SAS name literals are name tokens written as strings within quotation marks, followed by the letter n.
Name literals allow the use of special characters that are not otherwise allowed in SAS names , like the â€œ$â€� used by
the Excel libname engine to distinguish worksheets from named ranges.

For more information see the Recommended Readings.
SAS datasets are copied into named ranges on spreadsheets.
Thus, using SAS and EXCEL, there are four ways to access the same set of information:
Excel: Excel Named Range
Excel Spreadsheet
SAS: SAS Libname reference of the Excel named range
SAS Libname reference of the Excel Spreadsheet
**/

/*Do not want the dos window hanging around*/
Options noxwait noxsync;
run;
/*Create a dir*/
X "mkdir C:\test_xls";
run;

/*Write to excel via libname engine*/
LIBNAME XLSTest EXCEL "C:\test_xls\XLStest.xls" ;
run;

data XLSTest.class_tab;
 set sashelp.class;
run;

data XLSTest.retail_tab;
 set sashelp.retail;
run;

data XLSTest.Shoes_tab;
 set sashelp.Shoes;
run;

LIBNAME XLSTest Clear;

/*read from Excel via Libname Engine*/
LIBNAME XLSTest EXCEL "C:\test_xls\XLStest.xls" ;
run;

data Work.class;
 set XLSTest.class_tab;
 age_mo=age*12;
run;;

LIBNAME XLSTest Clear;
run;

/***
Section __: More Examples from the paper
**/
/*ACCESSING DATA FROM A SPREADSHEET*/
/*An existing spreadsheet with the data aligned in the top-left A1 cell is read directly
 using the trailing â€œ$â€� spreadsheet name convention:*/

LIBNAME WrkBk EXCEL 'My Workbook.xls' MIXED=YES;
DATA work.aFile;
 SET WrkBk.'aFile$'n; /*Not dollar sign*/
RUN;
LIBNAME WrkBk CLEAR;

/*ACCESSING DATA FROM A NAMED RANGE*/
/*An existing named range is read directly with the standard dataset name convention.
The name of the worksheet does not affect the named range.*/
LIBNAME WrkBk EXCEL 'My Workbook.xls';
DATA work.aNamedRange;
 SET WrkBk.aNamedRange;
RUN;
LIBNAME WrkBk CLEAR;

/*ADDING NEW SPREADSHEET AND DATA*/
/*A spreadsheet and named range combination are created the same way as a data set.
This creates both the spreadsheet and the named range.
*/

LIBNAME WrkBk EXCEL 'My Workbook.xls' VER=2002;
DATA WrkBk.class;
 SET sashelp.class;
RUN;
LIBNAME WrkBk CLEAR;

/*REPLACING NAMED RANGE OR SPREADSHEET DATA*/
/*The Excel Libname engine cannot replace Excel data by simply overwriting.
To replace Excel data first erase with Proc Datasets.
This does not affect named ranges or worksheets defined in Excel; it only removes the data they contain.
(See Deleting Data below). */

LIBNAME WrkBk EXCEL 'My Workbook.xls';
PROC DATASETS LIB=WrkBk;
 DELETE class;
RUN;
QUIT;
DATA WrkBk.class;
 SET sashelp.class;
RUN;
LIBNAME WrkBk CLEAR;

/*APPENDING DATA TO NAMED RANGE*/
/*Data sets may be appended to named range data.
The named range in Excel is automatically extended by SAS to encompass the additional data. */
LIBNAME WrkBk EXCEL 'My Workbook.xls' SCAN_TEXT=NO;
PROC APPEND BASE=WrkBk.class
DATA=sashelp.class;
RUN;
LIBNAME WrkBk CLEAR;

/*Note the libname option â€œSCAN_TEXT=NOâ€� must be used to append data.
The target area for the appended data must be empty or an error will occur.*/
/*DELETING DATA FROM AN EXCEL RANGE*/
/*To delete the contents of a named range:
This will delete all the cell data contents from the range,
 but not range definitions , border, shading, or other formatting.
*/
PROC DATASETS lib=WrkBk;
DELETE class;
RUN;
QUIT;

/*Note that any data from overlapping named ranges within the range will be deleted. */
/*Cells containing formulas cannot be deleted with Libname Excel, causing an error in the delete statement log.*/
/*DELETING DATA FROM AN EXCEL SPREADSHEET*/
/*Deleting the data contents of a spreadsheet works the same as ranges , except the SAS spreadsheet name literal*/
/*must be used due to the special â€œ$â€� character:*/
PROC DATASETS LIB=WrkBk;
DELETE 'class$'n;
RUN;
QUIT;

/*********** Excel LIBNAME OPTIONS ***************************/
/*EXCEL LIBNAME ENGINE AND DATA SET OPTIONS*/
/*DBLABEL=YES SAS variable labels , instead of variable names, are written out to column headers*/
/*DBSASTYPE=(COLUMN-NAME='SAS-DATA-TYPE') forces an Excel column to be read as a specified type*/
/*HEADER=NO If your Excel data does not have a header row with variable names assign the default variable names*/
/*MIXED=YES tells SAS to convert mixed columns to character
 The mixed option forces a read-only mode, to write data back out to a workbook first clear and reassign the libname*/
/* VALIDVARNAME=ANY An alternative to DBLABEL and DBSASLABEL is the â€œVALIDVARNAMEâ€� system option.*/

264
1
ÿ���252
3
airy(

1
332
1
5
AIRY(x)
The AIRY function returns the value of the airy function (Abramowitz and Stegun 1964;
Amos, Daniel and Weston 1977) (See References).
It is the solution of a differential equation
x=airy(2.0); 0.0349241304
207
1
z���252
3
anyalnum(

1
332
1
31
ANYALNUM(string <,start>)
Searches a character string for an alphanumeric character
and returns the first position at which it is found
string specifies the character expression to search.
start is an optional (integer) position at which the search should
 start and the direction in which to search.
data _null_;/*scanning let to right*/
 string='Next = Last + 1;';
 j=0;
 do until(j=0);
 j=anyalnum(string,j+1);
 if j=0 then put +3 "That's all";
 else do;
 c=substr(string,j,1);
 put +3 j= c=;
 end;
 end;
run;

data _null_;/*scanning right to left*/
 string='Next = Last + 1;';
 j=999999;
 do until(j=0);
 j=anyalnum(string,1-j);
 if j=0 then put +3 "That's all";
 else do;
 c=substr(string,j,1);
 put +3 j= c=;
 end;
 end;
run;
95
1
þ���252
3
anyalpha(

1
332
1
130
/*anyAlpha(string <, start >)
 Searches a character string for an alphabetic character,
 and returns the first position at which the character is found.
AnyDigit Searches a character string for a digit, and returns the first position at which the digit is found.
AnyName Searches a character string for a character that is valid in a SAS variable name under VALIDVARNAME=V7,
 and returns the first position at which that character is found.
AnyPunct Searches a character string for a punctuation character,
 and returns the first position at which that character is found.
AnySpace Searches a character string for:
 a white-space character (blank, horizontal and vertical tab, carriage return, line feed,
 and form feed),
 and returns the first position at which that character is found.	
AnyUpper Searches a character string for an uppercase letter,
 and returns the first position at which the letter is found. 	
AnyLower Searches a character string for a lowercase letter,
 and returns the first position at which the letter is found. 	

INDEX 	 Searches a character expression for a string of characters,
		 and returns the position of the string's first character for the first occurrence of the string.
INDEXC Searches a character expression for any of the specified characters,
 and returns the position of that character.
INDEXW Searches a character expression for a string that is specified as a word,
 and returns the position of the first character in the word.

NOTALNUM Searches a character string for a non-alphanumeric character,
 and returns the first position at which the character is found.
NOTALPHA Searches a character string for a nonalphabetic character,
 and returns the first position at which the character is found.
NOTCNTRL Searches a character string for a character that is not a control character,
 and returns the first position at which that character is found.
NOTDIGIT Searches a character string for any character that is not a digit,
 and returns the first position at which that character is found.
NOTFIRST Searches a character string for an invalid first character
 in a SAS variable name under VALIDVARNAME=V7, and returns the first position at which that character is found.
NOTGRAPH Searches a character string for a non-graphical character,
 and returns the first position at which that character is found.
NOTLOWER Searches a character string for a character that is not a lowercase letter,
 and returns the first position at which that character is found.
NOTNAME Searches a character string for an invalid character
 in a SAS variable name under VALIDVARNAME=V7,
 and returns the first position at which that character is found.
NOTPRINT Searches a character string for a nonprintable character,
 and returns the first position at which that character is found.
NOTPUNCT Searches a character string for a character that is not
 a punctuation character, and returns the first position at which that character is found.
NOTSPACE Searches a character string for a character that is not a white-space
 character (blank, horizontal and vertical tab, carriage return, line feed,
 and form feed), and returns the first position at which that character is found.
NOTUPPER Searches a character string for a character that is not an uppercase letter,
 and returns the first position at which that character is found.
NOTXDIGIT Searches a character string for a character that is not a hexadecimal character,
 and returns the first position at which that character is found.

*/
 data _null_;
 target="123!c5 D9_;91234567890";
 AnyAlpha1=AnyAlpha(target);
 AnyAlpha2=AnyAlpha(target,5);
 AnyAlpha3=AnyAlpha(target,-1);

 AnyDigit1=AnyDigit(target);
 AnyDigit2=AnyDigit(target,5);
 AnyDigit3=AnyDigit(target,-1);

 ANYPUNCT1=AnyPunct(target);
 ANYPUNCT2=AnyPunct(target,13);

 ANYUPPER1=AnyUpper(target);
 ANYUPPER2=AnyUpper(target,13);

 AnyLower1=AnyLower(target);
 AnyLower2=AnyLower(target,13);

 NOTALNUM1=NOTALNUM(target);
 NOTALNUM2=NOTALNUM(target);

 NOTALPHA1 =NOTALPHA(target);
 NOTALPHA2 =NOTALPHA(target,8);

 NOTCNTRL1 =NOTCNTRL(target);
 NOTCNTRL2 =NOTCNTRL(target,8);

 NOTDIGIT1 =NOTDIGIT(target);
 NOTDIGIT2 =NOTDIGIT(target,8);

 NOTFIRST1 =NOTFIRST(target);
 NOTFIRST2 =NOTFIRST(target,8);

 NOTGRAPH1 =NOTGRAPH(target);
 NOTGRAPH2 =NOTGRAPH(target,8);

 NOTLOWER1 =NOTLOWER(target);
 NOTLOWER2 =NOTLOWER(target,8);

 NOTNAME1 =NOTNAME(target);
 NOTNAME2 =NOTNAME(target,8);

 NOTPRINT1 =NOTPRINT(target);
 NOTPRINT2 =NOTPRINT(target,8);

 NOTPUNCT1 =NOTPUNCT(target);
 NOTPUNCT2 =NOTPUNCT(target,8);

 NOTSPACE1 =NOTSPACE(target);
 NOTSPACE2 =NOTSPACE(target,8);

 NOTUPPER1 =NOTUPPER(target);
 NOTUPPER2 =NOTUPPER(target,8);
/* NOTXDIGIT Function*/
 put target= AnyAlpha1= AnyAlpha2= AnyAlpha3=;
 put target= AnyDigit1= AnyDigit2= AnyDigit3=;
 put target= ANYPUNCT1= ANYPUNCT2= ;
 put target= ANYUpper1= ANYUpper2= ;
 put target= ANYLower1= ANYLower2= ;
 put target= NOTALNUM1= NOTALNUM2= ;
 put target= NOTALPHA1= NOTALPHA2= ;
 put target= NOTCNTRL1= NOTCNTRL2= ;
 put target= NOTDIGIT1= NOTDIGIT2= ;
 put target= NOTFIRST1= NOTFIRST2= ;
 put target= NOTGRAPH1= NOTGRAPH2= ;
 put target= NOTLOWER1= NOTLOWER2= ;
 put target= NOTNAME1= NOTNAME2= ;
 put target= NOTPRINT1= NOTPRINT2= ;
 put target= NOTPUNCT1= NOTPUNCT2= ;
 put target= NOTSPACE1= NOTSPACE2= ;
 put target= NOTUPPER1= NOTUPPER2= ;
run;
96
1
=���252
3
anycntrl(

1
332
1
1
anyCntrl(string< , start>)
97
1
þ���252
3
anydigit(

1
332
1
130
/*anyAlpha(string <, start >)
 Searches a character string for an alphabetic character,
 and returns the first position at which the character is found.
AnyDigit Searches a character string for a digit, and returns the first position at which the digit is found.
AnyName Searches a character string for a character that is valid in a SAS variable name under VALIDVARNAME=V7,
 and returns the first position at which that character is found.
AnyPunct Searches a character string for a punctuation character,
 and returns the first position at which that character is found.
AnySpace Searches a character string for:
 a white-space character (blank, horizontal and vertical tab, carriage return, line feed,
 and form feed),
 and returns the first position at which that character is found.	
AnyUpper Searches a character string for an uppercase letter,
 and returns the first position at which the letter is found. 	
AnyLower Searches a character string for a lowercase letter,
 and returns the first position at which the letter is found. 	

INDEX 	 Searches a character expression for a string of characters,
		 and returns the position of the string's first character for the first occurrence of the string.
INDEXC Searches a character expression for any of the specified characters,
 and returns the position of that character.
INDEXW Searches a character expression for a string that is specified as a word,
 and returns the position of the first character in the word.

NOTALNUM Searches a character string for a non-alphanumeric character,
 and returns the first position at which the character is found.
NOTALPHA Searches a character string for a nonalphabetic character,
 and returns the first position at which the character is found.
NOTCNTRL Searches a character string for a character that is not a control character,
 and returns the first position at which that character is found.
NOTDIGIT Searches a character string for any character that is not a digit,
 and returns the first position at which that character is found.
NOTFIRST Searches a character string for an invalid first character
 in a SAS variable name under VALIDVARNAME=V7, and returns the first position at which that character is found.
NOTGRAPH Searches a character string for a non-graphical character,
 and returns the first position at which that character is found.
NOTLOWER Searches a character string for a character that is not a lowercase letter,
 and returns the first position at which that character is found.
NOTNAME Searches a character string for an invalid character
 in a SAS variable name under VALIDVARNAME=V7,
 and returns the first position at which that character is found.
NOTPRINT Searches a character string for a nonprintable character,
 and returns the first position at which that character is found.
NOTPUNCT Searches a character string for a character that is not
 a punctuation character, and returns the first position at which that character is found.
NOTSPACE Searches a character string for a character that is not a white-space
 character (blank, horizontal and vertical tab, carriage return, line feed,
 and form feed), and returns the first position at which that character is found.
NOTUPPER Searches a character string for a character that is not an uppercase letter,
 and returns the first position at which that character is found.
NOTXDIGIT Searches a character string for a character that is not a hexadecimal character,
 and returns the first position at which that character is found.

*/
 data _null_;
 target="123!c5 D9_;91234567890";
 AnyAlpha1=AnyAlpha(target);
 AnyAlpha2=AnyAlpha(target,5);
 AnyAlpha3=AnyAlpha(target,-1);

 AnyDigit1=AnyDigit(target);
 AnyDigit2=AnyDigit(target,5);
 AnyDigit3=AnyDigit(target,-1);

 ANYPUNCT1=AnyPunct(target);
 ANYPUNCT2=AnyPunct(target,13);

 ANYUPPER1=AnyUpper(target);
 ANYUPPER2=AnyUpper(target,13);

 AnyLower1=AnyLower(target);
 AnyLower2=AnyLower(target,13);

 NOTALNUM1=NOTALNUM(target);
 NOTALNUM2=NOTALNUM(target);

 NOTALPHA1 =NOTALPHA(target);
 NOTALPHA2 =NOTALPHA(target,8);

 NOTCNTRL1 =NOTCNTRL(target);
 NOTCNTRL2 =NOTCNTRL(target,8);

 NOTDIGIT1 =NOTDIGIT(target);
 NOTDIGIT2 =NOTDIGIT(target,8);

 NOTFIRST1 =NOTFIRST(target);
 NOTFIRST2 =NOTFIRST(target,8);

 NOTGRAPH1 =NOTGRAPH(target);
 NOTGRAPH2 =NOTGRAPH(target,8);

 NOTLOWER1 =NOTLOWER(target);
 NOTLOWER2 =NOTLOWER(target,8);

 NOTNAME1 =NOTNAME(target);
 NOTNAME2 =NOTNAME(target,8);

 NOTPRINT1 =NOTPRINT(target);
 NOTPRINT2 =NOTPRINT(target,8);

 NOTPUNCT1 =NOTPUNCT(target);
 NOTPUNCT2 =NOTPUNCT(target,8);

 NOTSPACE1 =NOTSPACE(target);
 NOTSPACE2 =NOTSPACE(target,8);

 NOTUPPER1 =NOTUPPER(target);
 NOTUPPER2 =NOTUPPER(target,8);
/* NOTXDIGIT Function*/
 put target= AnyAlpha1= AnyAlpha2= AnyAlpha3=;
 put target= AnyDigit1= AnyDigit2= AnyDigit3=;
 put target= ANYPUNCT1= ANYPUNCT2= ;
 put target= ANYUpper1= ANYUpper2= ;
 put target= ANYLower1= ANYLower2= ;
 put target= NOTALNUM1= NOTALNUM2= ;
 put target= NOTALPHA1= NOTALPHA2= ;
 put target= NOTCNTRL1= NOTCNTRL2= ;
 put target= NOTDIGIT1= NOTDIGIT2= ;
 put target= NOTFIRST1= NOTFIRST2= ;
 put target= NOTGRAPH1= NOTGRAPH2= ;
 put target= NOTLOWER1= NOTLOWER2= ;
 put target= NOTNAME1= NOTNAME2= ;
 put target= NOTPRINT1= NOTPRINT2= ;
 put target= NOTPUNCT1= NOTPUNCT2= ;
 put target= NOTSPACE1= NOTSPACE2= ;
 put target= NOTUPPER1= NOTUPPER2= ;
run;
98
1
=���252
3
anyfirst(

1
332
1
1
anyFirst(string< , start>)
99
1
>���252
3
anygraph(

1
332
1
1
anyGraph(string< , start>)
100
1
ÿ���252
3
anylower(

1
332
1
130
/*anyAlpha(string <, start >)
 Searches a character string for an alphabetic character,
 and returns the first position at which the character is found.
AnyDigit Searches a character string for a digit, and returns the first position at which the digit is found.
AnyName Searches a character string for a character that is valid in a SAS variable name under VALIDVARNAME=V7,
 and returns the first position at which that character is found.
AnyPunct Searches a character string for a punctuation character,
 and returns the first position at which that character is found.
AnySpace Searches a character string for:
 a white-space character (blank, horizontal and vertical tab, carriage return, line feed,
 and form feed),
 and returns the first position at which that character is found.	
AnyUpper Searches a character string for an uppercase letter,
 and returns the first position at which the letter is found. 	
AnyLower Searches a character string for a lowercase letter,
 and returns the first position at which the letter is found. 	

INDEX 	 Searches a character expression for a string of characters,
		 and returns the position of the string's first character for the first occurrence of the string.
INDEXC Searches a character expression for any of the specified characters,
 and returns the position of that character.
INDEXW Searches a character expression for a string that is specified as a word,
 and returns the position of the first character in the word.

NOTALNUM Searches a character string for a non-alphanumeric character,
 and returns the first position at which the character is found.
NOTALPHA Searches a character string for a nonalphabetic character,
 and returns the first position at which the character is found.
NOTCNTRL Searches a character string for a character that is not a control character,
 and returns the first position at which that character is found.
NOTDIGIT Searches a character string for any character that is not a digit,
 and returns the first position at which that character is found.
NOTFIRST Searches a character string for an invalid first character
 in a SAS variable name under VALIDVARNAME=V7, and returns the first position at which that character is found.
NOTGRAPH Searches a character string for a non-graphical character,
 and returns the first position at which that character is found.
NOTLOWER Searches a character string for a character that is not a lowercase letter,
 and returns the first position at which that character is found.
NOTNAME Searches a character string for an invalid character
 in a SAS variable name under VALIDVARNAME=V7,
 and returns the first position at which that character is found.
NOTPRINT Searches a character string for a nonprintable character,
 and returns the first position at which that character is found.
NOTPUNCT Searches a character string for a character that is not
 a punctuation character, and returns the first position at which that character is found.
NOTSPACE Searches a character string for a character that is not a white-space
 character (blank, horizontal and vertical tab, carriage return, line feed,
 and form feed), and returns the first position at which that character is found.
NOTUPPER Searches a character string for a character that is not an uppercase letter,
 and returns the first position at which that character is found.
NOTXDIGIT Searches a character string for a character that is not a hexadecimal character,
 and returns the first position at which that character is found.

*/
 data _null_;
 target="123!c5 D9_;91234567890";
 AnyAlpha1=AnyAlpha(target);
 AnyAlpha2=AnyAlpha(target,5);
 AnyAlpha3=AnyAlpha(target,-1);

 AnyDigit1=AnyDigit(target);
 AnyDigit2=AnyDigit(target,5);
 AnyDigit3=AnyDigit(target,-1);

 ANYPUNCT1=AnyPunct(target);
 ANYPUNCT2=AnyPunct(target,13);

 ANYUPPER1=AnyUpper(target);
 ANYUPPER2=AnyUpper(target,13);

 AnyLower1=AnyLower(target);
 AnyLower2=AnyLower(target,13);

 NOTALNUM1=NOTALNUM(target);
 NOTALNUM2=NOTALNUM(target);

 NOTALPHA1 =NOTALPHA(target);
 NOTALPHA2 =NOTALPHA(target,8);

 NOTCNTRL1 =NOTCNTRL(target);
 NOTCNTRL2 =NOTCNTRL(target,8);

 NOTDIGIT1 =NOTDIGIT(target);
 NOTDIGIT2 =NOTDIGIT(target,8);

 NOTFIRST1 =NOTFIRST(target);
 NOTFIRST2 =NOTFIRST(target,8);

 NOTGRAPH1 =NOTGRAPH(target);
 NOTGRAPH2 =NOTGRAPH(target,8);

 NOTLOWER1 =NOTLOWER(target);
 NOTLOWER2 =NOTLOWER(target,8);

 NOTNAME1 =NOTNAME(target);
 NOTNAME2 =NOTNAME(target,8);

 NOTPRINT1 =NOTPRINT(target);
 NOTPRINT2 =NOTPRINT(target,8);

 NOTPUNCT1 =NOTPUNCT(target);
 NOTPUNCT2 =NOTPUNCT(target,8);

 NOTSPACE1 =NOTSPACE(target);
 NOTSPACE2 =NOTSPACE(target,8);

 NOTUPPER1 =NOTUPPER(target);
 NOTUPPER2 =NOTUPPER(target,8);
/* NOTXDIGIT Function*/
 put target= AnyAlpha1= AnyAlpha2= AnyAlpha3=;
 put target= AnyDigit1= AnyDigit2= AnyDigit3=;
 put target= ANYPUNCT1= ANYPUNCT2= ;
 put target= ANYUpper1= ANYUpper2= ;
 put target= ANYLower1= ANYLower2= ;
 put target= NOTALNUM1= NOTALNUM2= ;
 put target= NOTALPHA1= NOTALPHA2= ;
 put target= NOTCNTRL1= NOTCNTRL2= ;
 put target= NOTDIGIT1= NOTDIGIT2= ;
 put target= NOTFIRST1= NOTFIRST2= ;
 put target= NOTGRAPH1= NOTGRAPH2= ;
 put target= NOTLOWER1= NOTLOWER2= ;
 put target= NOTNAME1= NOTNAME2= ;
 put target= NOTPRINT1= NOTPRINT2= ;
 put target= NOTPUNCT1= NOTPUNCT2= ;
 put target= NOTSPACE1= NOTSPACE2= ;
 put target= NOTUPPER1= NOTUPPER2= ;
run;
101
1
ý���252
3
anyname(

1
332
1
130
/*anyAlpha(string <, start >)
 Searches a character string for an alphabetic character,
 and returns the first position at which the character is found.
AnyDigit Searches a character string for a digit, and returns the first position at which the digit is found.
AnyName Searches a character string for a character that is valid in a SAS variable name under VALIDVARNAME=V7,
 and returns the first position at which that character is found.
AnyPunct Searches a character string for a punctuation character,
 and returns the first position at which that character is found.
AnySpace Searches a character string for:
 a white-space character (blank, horizontal and vertical tab, carriage return, line feed,
 and form feed),
 and returns the first position at which that character is found.	
AnyUpper Searches a character string for an uppercase letter,
 and returns the first position at which the letter is found. 	
AnyLower Searches a character string for a lowercase letter,
 and returns the first position at which the letter is found. 	

INDEX 	 Searches a character expression for a string of characters,
		 and returns the position of the string's first character for the first occurrence of the string.
INDEXC Searches a character expression for any of the specified characters,
 and returns the position of that character.
INDEXW Searches a character expression for a string that is specified as a word,
 and returns the position of the first character in the word.

NOTALNUM Searches a character string for a non-alphanumeric character,
 and returns the first position at which the character is found.
NOTALPHA Searches a character string for a nonalphabetic character,
 and returns the first position at which the character is found.
NOTCNTRL Searches a character string for a character that is not a control character,
 and returns the first position at which that character is found.
NOTDIGIT Searches a character string for any character that is not a digit,
 and returns the first position at which that character is found.
NOTFIRST Searches a character string for an invalid first character
 in a SAS variable name under VALIDVARNAME=V7, and returns the first position at which that character is found.
NOTGRAPH Searches a character string for a non-graphical character,
 and returns the first position at which that character is found.
NOTLOWER Searches a character string for a character that is not a lowercase letter,
 and returns the first position at which that character is found.
NOTNAME Searches a character string for an invalid character
 in a SAS variable name under VALIDVARNAME=V7,
 and returns the first position at which that character is found.
NOTPRINT Searches a character string for a nonprintable character,
 and returns the first position at which that character is found.
NOTPUNCT Searches a character string for a character that is not
 a punctuation character, and returns the first position at which that character is found.
NOTSPACE Searches a character string for a character that is not a white-space
 character (blank, horizontal and vertical tab, carriage return, line feed,
 and form feed), and returns the first position at which that character is found.
NOTUPPER Searches a character string for a character that is not an uppercase letter,
 and returns the first position at which that character is found.
NOTXDIGIT Searches a character string for a character that is not a hexadecimal character,
 and returns the first position at which that character is found.

*/
 data _null_;
 target="123!c5 D9_;91234567890";
 AnyAlpha1=AnyAlpha(target);
 AnyAlpha2=AnyAlpha(target,5);
 AnyAlpha3=AnyAlpha(target,-1);

 AnyDigit1=AnyDigit(target);
 AnyDigit2=AnyDigit(target,5);
 AnyDigit3=AnyDigit(target,-1);

 ANYPUNCT1=AnyPunct(target);
 ANYPUNCT2=AnyPunct(target,13);

 ANYUPPER1=AnyUpper(target);
 ANYUPPER2=AnyUpper(target,13);

 AnyLower1=AnyLower(target);
 AnyLower2=AnyLower(target,13);

 NOTALNUM1=NOTALNUM(target);
 NOTALNUM2=NOTALNUM(target);

 NOTALPHA1 =NOTALPHA(target);
 NOTALPHA2 =NOTALPHA(target,8);

 NOTCNTRL1 =NOTCNTRL(target);
 NOTCNTRL2 =NOTCNTRL(target,8);

 NOTDIGIT1 =NOTDIGIT(target);
 NOTDIGIT2 =NOTDIGIT(target,8);

 NOTFIRST1 =NOTFIRST(target);
 NOTFIRST2 =NOTFIRST(target,8);

 NOTGRAPH1 =NOTGRAPH(target);
 NOTGRAPH2 =NOTGRAPH(target,8);

 NOTLOWER1 =NOTLOWER(target);
 NOTLOWER2 =NOTLOWER(target,8);

 NOTNAME1 =NOTNAME(target);
 NOTNAME2 =NOTNAME(target,8);

 NOTPRINT1 =NOTPRINT(target);
 NOTPRINT2 =NOTPRINT(target,8);

 NOTPUNCT1 =NOTPUNCT(target);
 NOTPUNCT2 =NOTPUNCT(target,8);

 NOTSPACE1 =NOTSPACE(target);
 NOTSPACE2 =NOTSPACE(target,8);

 NOTUPPER1 =NOTUPPER(target);
 NOTUPPER2 =NOTUPPER(target,8);
/* NOTXDIGIT Function*/
 put target= AnyAlpha1= AnyAlpha2= AnyAlpha3=;
 put target= AnyDigit1= AnyDigit2= AnyDigit3=;
 put target= ANYPUNCT1= ANYPUNCT2= ;
 put target= ANYUpper1= ANYUpper2= ;
 put target= ANYLower1= ANYLower2= ;
 put target= NOTALNUM1= NOTALNUM2= ;
 put target= NOTALPHA1= NOTALPHA2= ;
 put target= NOTCNTRL1= NOTCNTRL2= ;
 put target= NOTDIGIT1= NOTDIGIT2= ;
 put target= NOTFIRST1= NOTFIRST2= ;
 put target= NOTGRAPH1= NOTGRAPH2= ;
 put target= NOTLOWER1= NOTLOWER2= ;
 put target= NOTNAME1= NOTNAME2= ;
 put target= NOTPRINT1= NOTPRINT2= ;
 put target= NOTPUNCT1= NOTPUNCT2= ;
 put target= NOTSPACE1= NOTSPACE2= ;
 put target= NOTUPPER1= NOTUPPER2= ;
run;
33
1
<���252
3
anyprint(

1
332
1
1
anyPrint(string< , start>)
0
1
ý���252
3
anypunct(

1
332
1
130
/*anyAlpha(string <, start >)
 Searches a character string for an alphabetic character,
 and returns the first position at which the character is found.
AnyDigit Searches a character string for a digit, and returns the first position at which the digit is found.
AnyName Searches a character string for a character that is valid in a SAS variable name under VALIDVARNAME=V7,
 and returns the first position at which that character is found.
AnyPunct Searches a character string for a punctuation character,
 and returns the first position at which that character is found.
AnySpace Searches a character string for:
 a white-space character (blank, horizontal and vertical tab, carriage return, line feed,
 and form feed),
 and returns the first position at which that character is found.	
AnyUpper Searches a character string for an uppercase letter,
 and returns the first position at which the letter is found. 	
AnyLower Searches a character string for a lowercase letter,
 and returns the first position at which the letter is found. 	

INDEX 	 Searches a character expression for a string of characters,
		 and returns the position of the string's first character for the first occurrence of the string.
INDEXC Searches a character expression for any of the specified characters,
 and returns the position of that character.
INDEXW Searches a character expression for a string that is specified as a word,
 and returns the position of the first character in the word.

NOTALNUM Searches a character string for a non-alphanumeric character,
 and returns the first position at which the character is found.
NOTALPHA Searches a character string for a nonalphabetic character,
 and returns the first position at which the character is found.
NOTCNTRL Searches a character string for a character that is not a control character,
 and returns the first position at which that character is found.
NOTDIGIT Searches a character string for any character that is not a digit,
 and returns the first position at which that character is found.
NOTFIRST Searches a character string for an invalid first character
 in a SAS variable name under VALIDVARNAME=V7, and returns the first position at which that character is found.
NOTGRAPH Searches a character string for a non-graphical character,
 and returns the first position at which that character is found.
NOTLOWER Searches a character string for a character that is not a lowercase letter,
 and returns the first position at which that character is found.
NOTNAME Searches a character string for an invalid character
 in a SAS variable name under VALIDVARNAME=V7,
 and returns the first position at which that character is found.
NOTPRINT Searches a character string for a nonprintable character,
 and returns the first position at which that character is found.
NOTPUNCT Searches a character string for a character that is not
 a punctuation character, and returns the first position at which that character is found.
NOTSPACE Searches a character string for a character that is not a white-space
 character (blank, horizontal and vertical tab, carriage return, line feed,
 and form feed), and returns the first position at which that character is found.
NOTUPPER Searches a character string for a character that is not an uppercase letter,
 and returns the first position at which that character is found.
NOTXDIGIT Searches a character string for a character that is not a hexadecimal character,
 and returns the first position at which that character is found.

*/
 data _null_;
 target="123!c5 D9_;91234567890";
 AnyAlpha1=AnyAlpha(target);
 AnyAlpha2=AnyAlpha(target,5);
 AnyAlpha3=AnyAlpha(target,-1);

 AnyDigit1=AnyDigit(target);
 AnyDigit2=AnyDigit(target,5);
 AnyDigit3=AnyDigit(target,-1);

 ANYPUNCT1=AnyPunct(target);
 ANYPUNCT2=AnyPunct(target,13);

 ANYUPPER1=AnyUpper(target);
 ANYUPPER2=AnyUpper(target,13);

 AnyLower1=AnyLower(target);
 AnyLower2=AnyLower(target,13);

 NOTALNUM1=NOTALNUM(target);
 NOTALNUM2=NOTALNUM(target);

 NOTALPHA1 =NOTALPHA(target);
 NOTALPHA2 =NOTALPHA(target,8);

 NOTCNTRL1 =NOTCNTRL(target);
 NOTCNTRL2 =NOTCNTRL(target,8);

 NOTDIGIT1 =NOTDIGIT(target);
 NOTDIGIT2 =NOTDIGIT(target,8);

 NOTFIRST1 =NOTFIRST(target);
 NOTFIRST2 =NOTFIRST(target,8);

 NOTGRAPH1 =NOTGRAPH(target);
 NOTGRAPH2 =NOTGRAPH(target,8);

 NOTLOWER1 =NOTLOWER(target);
 NOTLOWER2 =NOTLOWER(target,8);

 NOTNAME1 =NOTNAME(target);
 NOTNAME2 =NOTNAME(target,8);

 NOTPRINT1 =NOTPRINT(target);
 NOTPRINT2 =NOTPRINT(target,8);

 NOTPUNCT1 =NOTPUNCT(target);
 NOTPUNCT2 =NOTPUNCT(target,8);

 NOTSPACE1 =NOTSPACE(target);
 NOTSPACE2 =NOTSPACE(target,8);

 NOTUPPER1 =NOTUPPER(target);
 NOTUPPER2 =NOTUPPER(target,8);
/* NOTXDIGIT Function*/
 put target= AnyAlpha1= AnyAlpha2= AnyAlpha3=;
 put target= AnyDigit1= AnyDigit2= AnyDigit3=;
 put target= ANYPUNCT1= ANYPUNCT2= ;
 put target= ANYUpper1= ANYUpper2= ;
 put target= ANYLower1= ANYLower2= ;
 put target= NOTALNUM1= NOTALNUM2= ;
 put target= NOTALPHA1= NOTALPHA2= ;
 put target= NOTCNTRL1= NOTCNTRL2= ;
 put target= NOTDIGIT1= NOTDIGIT2= ;
 put target= NOTFIRST1= NOTFIRST2= ;
 put target= NOTGRAPH1= NOTGRAPH2= ;
 put target= NOTLOWER1= NOTLOWER2= ;
 put target= NOTNAME1= NOTNAME2= ;
 put target= NOTPRINT1= NOTPRINT2= ;
 put target= NOTPUNCT1= NOTPUNCT2= ;
 put target= NOTSPACE1= NOTSPACE2= ;
 put target= NOTUPPER1= NOTUPPER2= ;
run;
3
1
ý���252
3
anyspace(

1
332
1
130
/*anyAlpha(string <, start >)
 Searches a character string for an alphabetic character,
 and returns the first position at which the character is found.
AnyDigit Searches a character string for a digit, and returns the first position at which the digit is found.
AnyName Searches a character string for a character that is valid in a SAS variable name under VALIDVARNAME=V7,
 and returns the first position at which that character is found.
AnyPunct Searches a character string for a punctuation character,
 and returns the first position at which that character is found.
AnySpace Searches a character string for:
 a white-space character (blank, horizontal and vertical tab, carriage return, line feed,
 and form feed),
 and returns the first position at which that character is found.	
AnyUpper Searches a character string for an uppercase letter,
 and returns the first position at which the letter is found. 	
AnyLower Searches a character string for a lowercase letter,
 and returns the first position at which the letter is found. 	

INDEX 	 Searches a character expression for a string of characters,
		 and returns the position of the string's first character for the first occurrence of the string.
INDEXC Searches a character expression for any of the specified characters,
 and returns the position of that character.
INDEXW Searches a character expression for a string that is specified as a word,
 and returns the position of the first character in the word.

NOTALNUM Searches a character string for a non-alphanumeric character,
 and returns the first position at which the character is found.
NOTALPHA Searches a character string for a nonalphabetic character,
 and returns the first position at which the character is found.
NOTCNTRL Searches a character string for a character that is not a control character,
 and returns the first position at which that character is found.
NOTDIGIT Searches a character string for any character that is not a digit,
 and returns the first position at which that character is found.
NOTFIRST Searches a character string for an invalid first character
 in a SAS variable name under VALIDVARNAME=V7, and returns the first position at which that character is found.
NOTGRAPH Searches a character string for a non-graphical character,
 and returns the first position at which that character is found.
NOTLOWER Searches a character string for a character that is not a lowercase letter,
 and returns the first position at which that character is found.
NOTNAME Searches a character string for an invalid character
 in a SAS variable name under VALIDVARNAME=V7,
 and returns the first position at which that character is found.
NOTPRINT Searches a character string for a nonprintable character,
 and returns the first position at which that character is found.
NOTPUNCT Searches a character string for a character that is not
 a punctuation character, and returns the first position at which that character is found.
NOTSPACE Searches a character string for a character that is not a white-space
 character (blank, horizontal and vertical tab, carriage return, line feed,
 and form feed), and returns the first position at which that character is found.
NOTUPPER Searches a character string for a character that is not an uppercase letter,
 and returns the first position at which that character is found.
NOTXDIGIT Searches a character string for a character that is not a hexadecimal character,
 and returns the first position at which that character is found.

*/
 data _null_;
 target="123!c5 D9_;91234567890";
 AnyAlpha1=AnyAlpha(target);
 AnyAlpha2=AnyAlpha(target,5);
 AnyAlpha3=AnyAlpha(target,-1);

 AnyDigit1=AnyDigit(target);
 AnyDigit2=AnyDigit(target,5);
 AnyDigit3=AnyDigit(target,-1);

 ANYPUNCT1=AnyPunct(target);
 ANYPUNCT2=AnyPunct(target,13);

 ANYUPPER1=AnyUpper(target);
 ANYUPPER2=AnyUpper(target,13);

 AnyLower1=AnyLower(target);
 AnyLower2=AnyLower(target,13);

 NOTALNUM1=NOTALNUM(target);
 NOTALNUM2=NOTALNUM(target);

 NOTALPHA1 =NOTALPHA(target);
 NOTALPHA2 =NOTALPHA(target,8);

 NOTCNTRL1 =NOTCNTRL(target);
 NOTCNTRL2 =NOTCNTRL(target,8);

 NOTDIGIT1 =NOTDIGIT(target);
 NOTDIGIT2 =NOTDIGIT(target,8);

 NOTFIRST1 =NOTFIRST(target);
 NOTFIRST2 =NOTFIRST(target,8);

 NOTGRAPH1 =NOTGRAPH(target);
 NOTGRAPH2 =NOTGRAPH(target,8);

 NOTLOWER1 =NOTLOWER(target);
 NOTLOWER2 =NOTLOWER(target,8);

 NOTNAME1 =NOTNAME(target);
 NOTNAME2 =NOTNAME(target,8);

 NOTPRINT1 =NOTPRINT(target);
 NOTPRINT2 =NOTPRINT(target,8);

 NOTPUNCT1 =NOTPUNCT(target);
 NOTPUNCT2 =NOTPUNCT(target,8);

 NOTSPACE1 =NOTSPACE(target);
 NOTSPACE2 =NOTSPACE(target,8);

 NOTUPPER1 =NOTUPPER(target);
 NOTUPPER2 =NOTUPPER(target,8);
/* NOTXDIGIT Function*/
 put target= AnyAlpha1= AnyAlpha2= AnyAlpha3=;
 put target= AnyDigit1= AnyDigit2= AnyDigit3=;
 put target= ANYPUNCT1= ANYPUNCT2= ;
 put target= ANYUpper1= ANYUpper2= ;
 put target= ANYLower1= ANYLower2= ;
 put target= NOTALNUM1= NOTALNUM2= ;
 put target= NOTALPHA1= NOTALPHA2= ;
 put target= NOTCNTRL1= NOTCNTRL2= ;
 put target= NOTDIGIT1= NOTDIGIT2= ;
 put target= NOTFIRST1= NOTFIRST2= ;
 put target= NOTGRAPH1= NOTGRAPH2= ;
 put target= NOTLOWER1= NOTLOWER2= ;
 put target= NOTNAME1= NOTNAME2= ;
 put target= NOTPRINT1= NOTPRINT2= ;
 put target= NOTPUNCT1= NOTPUNCT2= ;
 put target= NOTSPACE1= NOTSPACE2= ;
 put target= NOTUPPER1= NOTUPPER2= ;
run;
5
1
ý���252
3
anyupper(

1
332
1
130
/*anyAlpha(string <, start >)
 Searches a character string for an alphabetic character,
 and returns the first position at which the character is found.
AnyDigit Searches a character string for a digit, and returns the first position at which the digit is found.
AnyName Searches a character string for a character that is valid in a SAS variable name under VALIDVARNAME=V7,
 and returns the first position at which that character is found.
AnyPunct Searches a character string for a punctuation character,
 and returns the first position at which that character is found.
AnySpace Searches a character string for:
 a white-space character (blank, horizontal and vertical tab, carriage return, line feed,
 and form feed),
 and returns the first position at which that character is found.	
AnyUpper Searches a character string for an uppercase letter,
 and returns the first position at which the letter is found. 	
AnyLower Searches a character string for a lowercase letter,
 and returns the first position at which the letter is found. 	

INDEX 	 Searches a character expression for a string of characters,
		 and returns the position of the string's first character for the first occurrence of the string.
INDEXC Searches a character expression for any of the specified characters,
 and returns the position of that character.
INDEXW Searches a character expression for a string that is specified as a word,
 and returns the position of the first character in the word.

NOTALNUM Searches a character string for a non-alphanumeric character,
 and returns the first position at which the character is found.
NOTALPHA Searches a character string for a nonalphabetic character,
 and returns the first position at which the character is found.
NOTCNTRL Searches a character string for a character that is not a control character,
 and returns the first position at which that character is found.
NOTDIGIT Searches a character string for any character that is not a digit,
 and returns the first position at which that character is found.
NOTFIRST Searches a character string for an invalid first character
 in a SAS variable name under VALIDVARNAME=V7, and returns the first position at which that character is found.
NOTGRAPH Searches a character string for a non-graphical character,
 and returns the first position at which that character is found.
NOTLOWER Searches a character string for a character that is not a lowercase letter,
 and returns the first position at which that character is found.
NOTNAME Searches a character string for an invalid character
 in a SAS variable name under VALIDVARNAME=V7,
 and returns the first position at which that character is found.
NOTPRINT Searches a character string for a nonprintable character,
 and returns the first position at which that character is found.
NOTPUNCT Searches a character string for a character that is not
 a punctuation character, and returns the first position at which that character is found.
NOTSPACE Searches a character string for a character that is not a white-space
 character (blank, horizontal and vertical tab, carriage return, line feed,
 and form feed), and returns the first position at which that character is found.
NOTUPPER Searches a character string for a character that is not an uppercase letter,
 and returns the first position at which that character is found.
NOTXDIGIT Searches a character string for a character that is not a hexadecimal character,
 and returns the first position at which that character is found.

*/
 data _null_;
 target="123!c5 D9_;91234567890";
 AnyAlpha1=AnyAlpha(target);
 AnyAlpha2=AnyAlpha(target,5);
 AnyAlpha3=AnyAlpha(target,-1);

 AnyDigit1=AnyDigit(target);
 AnyDigit2=AnyDigit(target,5);
 AnyDigit3=AnyDigit(target,-1);

 ANYPUNCT1=AnyPunct(target);
 ANYPUNCT2=AnyPunct(target,13);

 ANYUPPER1=AnyUpper(target);
 ANYUPPER2=AnyUpper(target,13);

 AnyLower1=AnyLower(target);
 AnyLower2=AnyLower(target,13);

 NOTALNUM1=NOTALNUM(target);
 NOTALNUM2=NOTALNUM(target);

 NOTALPHA1 =NOTALPHA(target);
 NOTALPHA2 =NOTALPHA(target,8);

 NOTCNTRL1 =NOTCNTRL(target);
 NOTCNTRL2 =NOTCNTRL(target,8);

 NOTDIGIT1 =NOTDIGIT(target);
 NOTDIGIT2 =NOTDIGIT(target,8);

 NOTFIRST1 =NOTFIRST(target);
 NOTFIRST2 =NOTFIRST(target,8);

 NOTGRAPH1 =NOTGRAPH(target);
 NOTGRAPH2 =NOTGRAPH(target,8);

 NOTLOWER1 =NOTLOWER(target);
 NOTLOWER2 =NOTLOWER(target,8);

 NOTNAME1 =NOTNAME(target);
 NOTNAME2 =NOTNAME(target,8);

 NOTPRINT1 =NOTPRINT(target);
 NOTPRINT2 =NOTPRINT(target,8);

 NOTPUNCT1 =NOTPUNCT(target);
 NOTPUNCT2 =NOTPUNCT(target,8);

 NOTSPACE1 =NOTSPACE(target);
 NOTSPACE2 =NOTSPACE(target,8);

 NOTUPPER1 =NOTUPPER(target);
 NOTUPPER2 =NOTUPPER(target,8);
/* NOTXDIGIT Function*/
 put target= AnyAlpha1= AnyAlpha2= AnyAlpha3=;
 put target= AnyDigit1= AnyDigit2= AnyDigit3=;
 put target= ANYPUNCT1= ANYPUNCT2= ;
 put target= ANYUpper1= ANYUpper2= ;
 put target= ANYLower1= ANYLower2= ;
 put target= NOTALNUM1= NOTALNUM2= ;
 put target= NOTALPHA1= NOTALPHA2= ;
 put target= NOTCNTRL1= NOTCNTRL2= ;
 put target= NOTDIGIT1= NOTDIGIT2= ;
 put target= NOTFIRST1= NOTFIRST2= ;
 put target= NOTGRAPH1= NOTGRAPH2= ;
 put target= NOTLOWER1= NOTLOWER2= ;
 put target= NOTNAME1= NOTNAME2= ;
 put target= NOTPRINT1= NOTPRINT2= ;
 put target= NOTPUNCT1= NOTPUNCT2= ;
 put target= NOTSPACE1= NOTSPACE2= ;
 put target= NOTUPPER1= NOTUPPER2= ;
run;
6
1
?���252
3
anyxdigit(

1
332
1
1
anyXDigit(string< , start>)
48
1
H���252
3
array

1
332
1
153
/*array Lbound Hbound Dim _temporary_*/
/* This example is weak on multi-dimensional arrays -
DIM always returns a total count of the number of elements in an array dimension.
HBOUND returns the literal value of the upper bound of an array dimension.
The LBOUND function returns the lower bound of a one-dimensional array
 or the lower bound of a specified dimension of a multidimensional array.
temporaty arrays are faster than "regular" arrays*/

data ClassCount;
/*Count the number of students in each age*/
/*Lets assume students are between 1 and 20 years old for one array and 0 and 25 for the other array*/
retain age1-age20 NoOfMales NoOfFemales /*temp arrays are automatically retianed*/;
 /*So we do NOT need a retain for the temp array variables*/
set sashelp.class end=EOF;
/*an array statement will create new variables*/
array NumAgCt(20) age1-age20; /*varaibles in this array have two "names"*/
array TempAgCt(0:25) _temporary_; /*temp array variables only have one "name"*/
array NumSexCt(2) NoOfMales NoOfFemales; /*varaibles in this array have two "names"*/

/*Initialize the array elements to zero*/
if _n_=1 then
 Do;
 Do LoopCntr=Lbound(NumAgCt) to Hbound(NumAgCt);
 NumAgCt(LoopCntr)=0;
	 put "initializing the smaller array " LoopCntr= " is the value of the index counter and " NumAgCt(LoopCntr)=;
 end;
 put "1 ";
 Do LoopCntr=Lbound(TempAgCt) to Hbound(TempAgCt);
 TempAgCt(LoopCntr)=0;
	 put "initializing the larger array " LoopCntr= " is the value of the index counter and " TempAgCt(LoopCntr)=;
 End;
	 put "2 ";
 NumSexCt(1)=0; /*access the variable through the array "name" */
 NoOfFemales=0; /*access the variable through the variable "name" */
 End;

 /*Perm variables-Count students in age buckets - the age of the student is the bucket/cell number*/
 NumAgCt(age)=NumAgCt(age)+1 ;
 put "Loading a student with " age= " so " NumAgCt(age)= ;
 /*Temp variables-Count students in ages - the age of the student is the bucket/cell number*/
 TempAgCt(age)=TempAgCt(age)+1 ;

 if sex="M" then NumSexCt(1)+1;
 else if sex="F" then NoOfFemales+1;
 else put "Er" "ror in the gender value";

if EOF=1 then
 do;
		 put "3";
 do LoopPrm= Lbound(NumAgCt) to Hbound(NumAgCt) ;
 put "values from the perm array (with fewer cells:) " LoopPrm= "and the value is " NumAgCt(LoopPrm)=;
 end;
		 put "4";
 do loopTmp= Lbound(TempAgCt) to Hbound(NumAgCt) ;
 put "Printing values from the temp Un-Retained array: "
 LoopTmp= "and the value is " TempAgCt(loopTmp)=;
 end;
		 put "5";
 do LoopSex=1 to 2 by 1;
 put "Printing counts of the genders: "
 LoopSex= "and the value is " NumSexCt(LoopSex)=;
			end;
 end;
 run;

proc print data= ClassCount;
title "note that we do not have any of the temp variables";
run;
title "";

/*Dim and char and num arrays*/
/*In this example, DIM returns a value of 5. Therefore, SAS repeats the statements in the DO loop five times. */
data C_and_N_arrays;
 set sashelp.class;
	 /*We will copy from some source arrays to destination arrays*/
 array NumSrcA{3} age--weight; /*Note double dash to get all vara on the PDV between listed vars*/
 array ChrSrcA{2} $ name sex ;
 array NumDstA{3} DAge DHeight Dweight; /*Note double dash to get all vara on the PDV between listed vars*/
 array ChrDstA{2} $ Dname Dsex ;

 /*do some silly transforms below*/
	 do ChCntr=1 to dim(ChrSrcA);
	 ChrDstA(ChCntr) =ChrSrcA(ChCntr); /*copy from source to destination*/
 substr(ChrDstA{ChCntr},1,1)="X"; /*A silly transform*/
	 end;
	 do NmCntr=1 to dim(NumDstA);
 NumDstA(NmCntr)=NumSrcA(NmCntr); /*copy from source to destination*/
 NumDstA(NmCntr)=NumDstA(NmCntr)+(NmCntr*1000);/*A silly transform*/
	 end;
 /*Show stuff in the log*/
 do i=1 to dim(NumSrcA);
 Put "the value is: " NumSrcA(i)=;
 end;
run;

proc print data= C_and_N_arrays;
title "note that we do not have any of the temp variables";
run;
title "";

/*Examples of Character Arrays and inputting into an array - useful for creating an array from a table*/
 data CharArray; /*Character arrays*/
 array names{*} $ n1-n10;
 array capitals{*} $ c1-c10;
 input names{*};
 do i=1 to 10;
 capitals{i}=upcase(names{i});
 end;

 do PutLoop=1 to 10;
 put names(PutLoop)= " and " capitals(PutLoop)= ;
	 end;

 datalines;
smithers michaels gonzalez hurth frank bleigh
rounder joseph peters sam
;
proc print data=CharArray;
title "Note only one observation -you can merge to all obs or retain but consider a hash object";
run;
title "";

/*To create a temporary array, use the _TEMPORARY_ argument.
The following example creates a temporary array named TEST: */
/**/
options nodate pageno=1 linesize=80 pagesize=60 nocenter;

data score2(drop=i);
 array test{3} Avg4Test1-Avg4Test3 (87 77 80); /*Perm array of class average scores - assign initial values*/
 *array test{3} _temporary_ (87 77 80); /*Temp array of class average scores - assign initial values*/
 array score{3} StudGrade1-StudGrade3;
 input StudentId Score{*};
 CountAboveAve=0; /*initialize ofr eash student*/
 do i=1 to 3;
 if score{i}>=test{i} then
 do;
 CountAboveAve+1;
 end;
 end;
 datalines;
 7777 99 60 82
 5678 80 85 75
	 8888 86 76 79
 ;

 proc print noobs data=score2;
 title 'Data Set SCORE2';
 run;

259
1
L���252
3
band(

1
332
1
1
bAnd(nonnegativeInteger , nonnegativeInteger)
90
1
3���252
3
beta(

1
332
1
1
beta(shape , shape)
208
1
¿���252
3
Binary_BigFileSortedWithDuplicates

1
332
1
115
/**
Binary_BigFileSortedWithDuplicates

Binary: Big File Sorted With Duplicates

Section: 0- Create data sets
***/
Options nocenter;
Proc SQL;
create table WantInfo
 (SID Char(4) , Sex Char(1));
insert into WantInfo
values("0001","F")
values("3999","F")
values("2222","M")
values("3134","F")
/*values("6090","M")*/
values("7777","M");

proc print data=Wantinfo;
title "Wantinfo";
run;

Proc SQL;
Create table SWantInfo as
select * from WantINfo Order by SID;

proc print data=swantinfo;
title "swantinfo";
run;

proc SQL;
Create table BigLookIn
(SID char(4) , ARM Char(1));
insert into BigLookIn
values("8811","A")
values("9033","B")
values("9099","A")
values("2999","B")
values("3453","A")
values("3999","B")
values("4444","A")
values("4766","A")
values("5020","B")
values("0001","A")
values("0099","B")
values("1005","B")
values("1087","B")
values("2111","A")
values("5111","A")
values("6090","A")
values("6888","B")
values("7666","A")
values("7777","B")
values("8188","A");

/*Proc Print data=BigLookIn;*/
/*run;*/

Create table SBigLookIn as
select * from BigLookIn order by SID;

Create table SDupIn
(SID char(4) , test Char(1));
insert into SDupIn
values("0001","N") /*match*/
values("2222","A") /*match*/
values("2222","N") /*match*/
values("2222","A") /*match*/
values("2999","N")
values("3453","A")
values("3453","N")
values("3999","A"); /*match*/
quit;

proc print data=SBigLookIn;
title "SBigLookIn";
run;

/**
Section:_6_ example 6
***/
/*below is binary search of a sorted BIG FILE that has duplicates
 - for ID in samll file, can we find match in Large*/
 data Example6 ;
 set SWantInfo ; 	
 L = 1 ; H = n ; /*low starts at first obs, high at last obs*/
 do until (L > H | MatchF) ;
 pntr = floor ((L + H) * .5) ; /*pointer for the Binary search */
 set SDupIn (rename=(SID = SIDBig)) point=pntr nobs=n ;
 if Sid < SIDBig then H = pntr - 1 ;
 else if Sid > SIDBig then L = pntr + 1 ;
 else MatchF = 1 ;
 end ;
 if matchF ; /*if match=0/missing -.delete*/
/*IF there are dupes in big- check UP/DOWN from 1st "match"*/
/*Since we will need to search up AND down from where we matched*/
/*Save the current pointer where we found a match in FoundAt*/
 FoundAT = Pntr ;
 do Pntr = (FoundAt - 0) by -1 while (pntr >= 1) ; /*Read DOWN big file*/
 set SDupIn (rename=(SID = SIDBig)) point=pntr ; /*read "prev"*/
 if SIDbig < SID then leave ;/*IDs <>, stop reading "downÃ¢â‚¬Â�*/
 output ;
 end ;
 do Pntr = (FoundAT + 1) by +1 while (pntr <= n) ; /*read UP big file*/
 set SDupIn (rename=(SID = SIDBig)) point=pntr ; /*read "next"*/
 if SIDbig > SID then leave ; /*IDs <>, stop reading "upÃ¢â‚¬Â�*/
 output /*output for "up"*/;
 end ;
 run ;

 options nocenter;
 proc print data=example6;
 run;
383
1
y���252
3
Binary_DoNot DeleteMismatches

1
332
1
107
/**
Binary_DoNot DeleteMismatches

Binary: Do Not Delete Mismatches

Section: 0- Create data sets
***/
Options nocenter;
Proc SQL;
create table WantInfo
 (SID Char(4) , Sex Char(1));
insert into WantInfo
values("0001","F")
values("3999","F")
values("2222","M")
values("3134","F")
/*values("6090","M")*/
values("7777","M");

proc print data=Wantinfo;
title "Wantinfo";
run;

Proc SQL;
Create table SWantInfo as
select * from WantINfo Order by SID;

proc print data=swantinfo;
title "swantinfo";
run;

proc SQL;
Create table BigLookIn
(SID char(4) , ARM Char(1));
insert into BigLookIn
values("8811","A")
values("9033","B")
values("9099","A")
values("2999","B")
values("3453","A")
values("3999","B")
values("4444","A")
values("4766","A")
values("5020","B")
values("0001","A")
values("0099","B")
values("1005","B")
values("1087","B")
values("2111","A")
values("5111","A")
values("6090","A")
values("6888","B")
values("7666","A")
values("7777","B")
values("8188","A");

/*Proc Print data=BigLookIn;*/
/*run;*/

Create table SBigLookIn as
select * from BigLookIn order by SID;

Create table SDupIn
(SID char(4) , test Char(1));
insert into SDupIn
values("0001","N") /*match*/
values("2222","A") /*match*/
values("2222","N") /*match*/
values("2222","A") /*match*/
values("2999","N")
values("3453","A")
values("3453","N")
values("3999","A"); /*match*/
quit;

proc print data=SBigLookIn;
title "SBigLookIn";
run;

/**
Section:_5_ Example5 - Third Binary search
 Simple code so that you do not have to delete Ã¢â‚¬Å“smallÃ¢â‚¬Â� observations that do not match
***/
data Example5;
 set WantInfo;
 l=1; h = n; /*If we reset L to 1 each time, we do not need to sort Small*/
/*if No-Match: we will loop through arrays/pdv- to make variables missing */
	Array Big_C(*) $ arm; /*list of char vars in Large file*/
	/*array Big_N(*)*/ /*List_of_num_vars in Large file;*/
 do until (L > H or matchF);
 pntr = floor((L + H) * .5); /*Big must be sorted ofr binary search to work*/
 set SBigLookIn (rename=(SID=SIDBig)) nobs=n point=pntr;
 if SID < SIDBig then H = pntr - 1;
 else if SID > SIDBig then L = pntr + 1;
 else matchF = 1 ;
 end;
if matchF NE 1 then
	 do; /*On Fail to match: Clean PDV-Null NLL vars. from BigFL*/
 do i= 1 to dim(Big_C); Big_C(i)=""; end;
	 /*do i= 1 to dim(Big_N);*/ Big_N(i)=. ; end; /*uncomment arrays as needed*/
	 end;
 * if matchF; /*Commented out to keep no_matches; run;*/
run;

Proc Print data=example5;
Run;
382
1
;
��252
3
Binary_SmallAndLargeSortedNoDupes

1
332
1
99
/**
Section: 0- Create data sets
***/
Options nocenter;
Proc SQL;
create table WantInfo
 (SID Char(4) , Sex Char(1));
insert into WantInfo
values("0001","F")
values("3999","F")
values("2222","M")
values("3134","F")
/*values("6090","M")*/
values("7777","M");

proc print data=Wantinfo;
title "Wantinfo";
run;

Proc SQL;
Create table SWantInfo as
select * from WantINfo Order by SID;

proc print data=swantinfo;
title "swantinfo";
run;

proc SQL;
Create table BigLookIn
(SID char(4) , ARM Char(1));
insert into BigLookIn
values("8811","A")
values("9033","B")
values("9099","A")
values("2999","B")
values("3453","A")
values("3999","B")
values("4444","A")
values("4766","A")
values("5020","B")
values("0001","A")
values("0099","B")
values("1005","B")
values("1087","B")
values("2111","A")
values("5111","A")
values("6090","A")
values("6888","B")
values("7666","A")
values("7777","B")
values("8188","A");

/*Proc Print data=BigLookIn;*/
/*run;*/

Create table SBigLookIn as
select * from BigLookIn order by SID;

Create table SDupIn
(SID char(4) , test Char(1));
insert into SDupIn
values("0001","N") /*match*/
values("2222","A") /*match*/
values("2222","N") /*match*/
values("2222","A") /*match*/
values("2999","N")
values("3453","A")
values("3453","N")
values("3999","A"); /*match*/
quit;

proc print data=SBigLookIn;
title "SBigLookIn";
run;

/**
Section:_4 Example 4 small and large file are sorted
 NO Duplicatres
***/
data example4 ;
 set SWantInfo;
 retain L 1;
 *set initial lower value to 1, Since small is sorted keep old Lower limit using RETAIN ;
 h = n; * for each obs in small, we reset the upper limit to N;
 do until (L > H or matchF); /*do until limits converge or we find a match */
 pntr = floor((L + H) * .5); /*set P (obs to read) via a binary search*/
 set SBigLookIn (rename=(SID=SIDBg)) /*IDL is ID in Large*/
 nobs=n point=pntr;
 if SID < SIDBg then h =pntr - 1; /*If ID in Large is higher than desired, reset Upper to P-1*/
 else if SID > SIDBg then l =pntr + 1; /*If ID in Large is Lower than desired, reset Lower to P-1*/
 else matchF = 1;
 end;
 if matchF;
run;

proc print data=example4;
run;

380
1
‡	��252
3
Binary_SmallNotSortedLargeSortedNoDupes

1
332
1
103
/**
Binary_SmallNotSortedLargeSortedNoDupes
Binary: Small Not Sorted --- Large Sorted --- NoDupes

Section: 0- Create data sets
***/
Options nocenter;
Proc SQL;
create table WantInfo
 (SID Char(4) , Sex Char(1));
insert into WantInfo
values("0001","F")
values("3999","F")
values("2222","M")
values("3134","F")
/*values("6090","M")*/
values("7777","M");

proc print data=Wantinfo;
title "Wantinfo";
run;

Proc SQL;
Create table SWantInfo as
select * from WantINfo Order by SID;

proc print data=swantinfo;
title "swantinfo";
run;

proc SQL;
Create table BigLookIn
(SID char(4) , ARM Char(1));
insert into BigLookIn
values("8811","A")
values("9033","B")
values("9099","A")
values("2999","B")
values("3453","A")
values("3999","B")
values("4444","A")
values("4766","A")
values("5020","B")
values("0001","A")
values("0099","B")
values("1005","B")
values("1087","B")
values("2111","A")
values("5111","A")
values("6090","A")
values("6888","B")
values("7666","A")
values("7777","B")
values("8188","A");

/*Proc Print data=BigLookIn;*/
/*run;*/

Create table SBigLookIn as
select * from BigLookIn order by SID;

Create table SDupIn
(SID char(4) , test Char(1));
insert into SDupIn
values("0001","N") /*match*/
values("2222","A") /*match*/
values("2222","N") /*match*/
values("2222","A") /*match*/
values("2999","N")
values("3453","A")
values("3453","N")
values("3999","A"); /*match*/
quit;

proc print data=SBigLookIn;
title "SBigLookIn";
run;

/**
Section:3 Example 3 Binary search of large file:
 Small file: Sorted/Not sorted and duplicates allowed
		large file: Sorted - not indexed - no duplicates
***/
*** Binary search ;
proc print data=wantinfo;
run;

data Example3 ;
 set WantInfo;
 l = 1; h = n;
 do until (l > h or matchF);
 pntr = floor((l + h) * .5);
 set SBigLookIn (rename=(SID=SIDBg)) nobs=n point=pntr;
 if SID < SIDBg then h = pntr - 1;
 else if SID > SIDBg then l = pntr + 1;
 else matchF = 1;
 end;
 if matchF;
run;

Proc Print data=example3;
Run;
377
1
�	��252
3
Binary_SmallSortedLargeSortedNoDupes

1
332
1
103
/**
Section: 0- Create data sets
Binary_SmallSortedLargeSortedNoDupes
Binary: Small Sorted -- Large Sorted -- NoDupes

***/
Options nocenter;
Proc SQL;
create table WantInfo
 (SID Char(4) , Sex Char(1));
insert into WantInfo
values("0001","F")
values("3999","F")
values("2222","M")
values("3134","F")
/*values("6090","M")*/
values("7777","M");

proc print data=Wantinfo;
title "Wantinfo";
run;

Proc SQL;
Create table SWantInfo as
select * from WantINfo Order by SID;

proc print data=swantinfo;
title "swantinfo";
run;

proc SQL;
Create table BigLookIn
(SID char(4) , ARM Char(1));
insert into BigLookIn
values("8811","A")
values("9033","B")
values("9099","A")
values("2999","B")
values("3453","A")
values("3999","B")
values("4444","A")
values("4766","A")
values("5020","B")
values("0001","A")
values("0099","B")
values("1005","B")
values("1087","B")
values("2111","A")
values("5111","A")
values("6090","A")
values("6888","B")
values("7666","A")
values("7777","B")
values("8188","A");

/*Proc Print data=BigLookIn;*/
/*run;*/

Create table SBigLookIn as
select * from BigLookIn order by SID;

Create table SDupIn
(SID char(4) , test Char(1));
insert into SDupIn
values("0001","N") /*match*/
values("2222","A") /*match*/
values("2222","N") /*match*/
values("2222","A") /*match*/
values("2999","N")
values("3453","A")
values("3453","N")
values("3999","A"); /*match*/
quit;

proc print data=SBigLookIn;
title "SBigLookIn";
run;

/**
Section:4 Binary search of large file:
 Small file: Sorted - duplicates allowed
		large file: Sorted - not indexed - no duplicates
***/
Data example4 ;
 set SWantInfo;
 *Since small is sorted retain old Lower;
 retain L 1; * for each obs in small, reset upper to N;
 h = n;

 do until (L > H or matchF);
 pntr = floor((L + H) * .5);
 set SBigLookIn (rename=(SID=SIDBg)) nobs=n point=pntr;

 if SID < SIDBg then H =pntr - 1;
 else if SID > SIDBg then L =pntr + 1;
 else matchF = 1;
 end;

 if matchF;
run;

PROC PRINT DATA=EXAMPLE4;
RUN;
381
1
R���252
3
blshift(

1
332
1
1
bLShift(nonnegativeInteger , nonnegativeInteger)
13
1
W���252
3
call allperm(

1
332
1
1
Call allPerm(k , variable1<, variabel2<...>>) ;
209
1
\���252
3
call cats(

1
332
1
1
Call catS(resultVariable< , string1< , string2< ... >>) ;
4
1
]���252
3
call catt(

1
332
1
1
Call catT(resultVariable< , string1< , string2< ... >>) ;
10
1
i���252
3
call catx(

1
332
1
1
Call catX(separator , resultVariable< , string1< , string2< ... >>) ;
16
1
l���252
3
call compcost(

1
332
1
1
Call compCost(operation1 , value1< , operation2 , value2(, ...>>) ;
20
1
A���252
3
call execute(

1
332
1
25
/*Call execute*/
options mprint symbolgen;
%macro PrintIt(DSN= ,Optn=);
proc print data=&dsn &optn;
run;
%mend PrintIt;

data Driver;
infile datalines truncover firstobs=2;
Input @1 VarMacName $char8.
 		@10 VarDSN $char13.
 		@25 VarOptn $char8.
;
Datalines;
123456789012345678901234567890
PrintIt sashelp.class (Obs=10)
PrintIt sashelp.Shoes (Obs=5)
PrintIt sashelp.air
;
run;

data _null_;
set Driver;
call execute('%'||VarMacName||'(dsn='||Vardsn||',Optn='||VarOptn||');');
run;
198
1
R���252
3
call label(

1
332
1
1
Call label(varName , charVariableForLabel) ;
326
1
s���252
3
call missing(

1
332
1
1
Call missing(commaDelimitedVariableList | of sasVariableListSpecification) ;
34
1
n���252
3
call module(

1
332
1
1
Call module(<cntlString , >moduleName< , argument1< , argument2<...>) ;
192
1
p���252
3
call modulei(

1
332
1
1
Call moduleI(<cntlString , >moduleName< , argument1< , argument2<...>) ;
193
1
ª���252
3
call prxchange(

1
332
1
1
Call prxChange(regularExpressionId , times , oldString< , new-string< , resultLength< , truncationValue< , numberOfChanges>>>>) ;
11
1
=���252
3
call prxdebug(

1
332
1
1
Call prxDebug(on|off) ;
12
1
H���252
3
call prxfree(

1
332
1
1
Call prxFree(regularExpressionId) ;
18
1
v���252
3
call prxnext(

1
332
1
1
Call prxNext(regularExpressionId , start , stop , source , position , length) ;
19
1
m���252
3
call prxposn(

1
332
1
1
Call prxPosn(regularExpressionId , captureBuffer , start< , length>) ;
21
1
m���252
3
call prxsubstr(

1
332
1
1
Call prxSubstr(regularExpressionId , source , position< , length>) ;
27
1
‚���252
3
call ranperk(

1
332
1
1
Call ranPerK(seed , K , numericVariable1< , numericVariable2< , numericVariable3<...>>>) ;
271
1
~���252
3
call ranperm(

1
332
1
1
Call ranPerm(seed , numericVariable1< , numericVariable2< , numericVariable3<...>>>) ;
272
1
S���252
3
call ranpoi(

1
332
1
1
Call ranPoi(seed , mean , numericVariable) ;
273
1
[���252
3
call rantbl(

1
332
1
1
Call ranTbl(seed , variableList , numericVariable) ;
274
1
Y���252
3
call rantri(

1
332
1
1
Call ranTri(seed , modalValue , numericVariable) ;
275
1
L���252
3
call ranuni(

1
332
1
1
Call ranUni(seed , numericVariable) ;
276
1
n���252
3
call rxchange(

1
332
1
1
Call rxChange(regularExpressionId , times , oldString< , newString>) ;
29
1
F���252
3
call rxfree(

1
332
1
1
Call rxFree(regularExpressionId) ;
35
1
u���252
3
call rxsubstr(

1
332
1
1
Call rxSubstr(regularExpressionId , string , position< , length< , score>>) ;
36
1
w���252
3
call scan(

1
332
1
1
Call scan(string , wordNumber , positionOfWord , lengthOfWord< , wordDelimiters>) ;
59
1
y���252
3
call scanq(

1
332
1
1
Call scanQ(string , wordNumber , positionOfWord , lengthOfWord< , wordDelimiters>) ;
57
1
7���252
3
call set(

1
332
1
1
Call set(datasetId) ;
327
1
|���252
3
call stdize(

1
332
1
1
Call stdize(<option1< , option2<...>> , numericVariable1< , numericVariable2<...>>) ;
212
1
����252
3
call symput(

1
332
1
14
/*Call Symput, symget, resolve */
data _null_;
length CVarInPDV1 $6;
call symput ("DogName","spot");
call Symput ("DogAge",5);
 put "Before Symget " CVarInPDV1= ;
CVarInPDV1=symget("DogName");
 put "After Symget " CVarInPDV1= ;
NVarInPDV1=symget("DogAge");
 put "After Symget " NVarInPDV1= ;
/*I do not know anyone who uses resolve*/
 /*see The RESOLVE Function - What Is It Good For?*/
 /*http://www.nesug.org/proceedings/nesug98/code/p088.pdf*/
run;
199
1
a���252
3
call symputx(

1
332
1
1
Call symPutX('macroVariableName' , sasCode< , 'g|l|f'>) ;
200
1
Q���252
3
call vname(

1
332
1
1
Call vName(varName , charVAriableForName) ;
328
1
T���252
3
call vnext(

1
332
1
1
Call vNext(varName<, varType< , varLength>>) ;
329
1

���252
3
cat(

1
332
1
68
/***/
/*CAT Function CATQ Function CATS Function CATT Function CATX Function

The results of the CAT, CATS, CATT, and CATX functions are usually equivalent to those
that are produced by certain combinations of the concatenation operator (||) and the TRIM and LEFT functions.
However, using the CAT, CATS, CATT, and CATX functions IS FASTER than using TRIM and LEFT,
and you can use them with the OF syntax for variable lists in calling environments that support variable lists.

CAT(OF X1-X4) is the same as X1||X2||X3||X4

CATS(OF X1-X4) is the same as TRIM(LEFT(X1))||TRIM(LEFT(X2))||TRIM(LEFT(X3))||TRIM(LEFT(X4))

CATT(OF X1-X4) is the same as TRIM(X1)||TRIM(X2)||TRIM(X3)||TRIM(X4)

CATX(SP, OF X1-X4) is the same as
 TRIM(LEFT(X1))||SP||TRIM(LEFT(X2))||SP||TRIM(LEFT(X3))||SP||TRIM(LEFT(X4))

CatQ Concatenates character or numeric values by using a delimiter to separate
 items and by adding quotation marks to strings that contain the delimiter.*/
data _null_;
 result1=CATQ(' ',
 'noblanks',
 'one blank',
 12345,
 ' lots of blanks ');
 result2=CATQ('CS',
 'Period (.) ',
 'Ampersand (&) ',
 'Comma (,) ',
 'Double quotation marks (") ',
 ' Leading Blanks');
 result3=CATQ('BCQT',
 'Period (.) ',
 'Ampersand (&) ',
 'Comma (,) ',
 'Double quotation marks (") ',
 ' Leading Blanks');
 result4=CATQ('ADT',
 '#=#',
 'Period (.) ',
 'Ampersand (&) ',
 'Comma (,) ',
 'Double quotation marks (") ',
 ' Leading Blanks');
 result5=CATQ('N',
 'ABC_123 ',
 '123 ',
 'ABC 123');
 put (result1-result5) (=/);
run;

data _null_;
 separator='%%$%%';
 x='The Olympic ';
 y=' Arts Festival ';
 z=' includes works by ';
 a='Dale Chihuly.';
 ResultCat=cat(x,y,z,a);
 ResultCatS=catS(x,y,z,a);
 ResultCatT=catT(x,y,z,a);
 resultCatX=catX(separator,x,y,z,a);
 resultCatXCool=catx(" ",x,y,z,a);
 put "concatinates: " ResultCat= $char.;
 put "Strips and then concatinates: " ResultCatS= $char.;
 put "Trims and then concatinates: " ResultCaTT= $char.;
 put "Strips, adds separator & concatinates: " ResultCatX= $char.;
 put "Useful -> " resultCatXCool= ;
run;
7
1
���252
3
catq(

1
332
1
68
/***/
/*CAT Function CATQ Function CATS Function CATT Function CATX Function

The results of the CAT, CATS, CATT, and CATX functions are usually equivalent to those
that are produced by certain combinations of the concatenation operator (||) and the TRIM and LEFT functions.
However, using the CAT, CATS, CATT, and CATX functions IS FASTER than using TRIM and LEFT,
and you can use them with the OF syntax for variable lists in calling environments that support variable lists.

CAT(OF X1-X4) is the same as X1||X2||X3||X4

CATS(OF X1-X4) is the same as TRIM(LEFT(X1))||TRIM(LEFT(X2))||TRIM(LEFT(X3))||TRIM(LEFT(X4))

CATT(OF X1-X4) is the same as TRIM(X1)||TRIM(X2)||TRIM(X3)||TRIM(X4)

CATX(SP, OF X1-X4) is the same as
 TRIM(LEFT(X1))||SP||TRIM(LEFT(X2))||SP||TRIM(LEFT(X3))||SP||TRIM(LEFT(X4))

CatQ Concatenates character or numeric values by using a delimiter to separate
 items and by adding quotation marks to strings that contain the delimiter.*/
data _null_;
 result1=CATQ(' ',
 'noblanks',
 'one blank',
 12345,
 ' lots of blanks ');
 result2=CATQ('CS',
 'Period (.) ',
 'Ampersand (&) ',
 'Comma (,) ',
 'Double quotation marks (") ',
 ' Leading Blanks');
 result3=CATQ('BCQT',
 'Period (.) ',
 'Ampersand (&) ',
 'Comma (,) ',
 'Double quotation marks (") ',
 ' Leading Blanks');
 result4=CATQ('ADT',
 '#=#',
 'Period (.) ',
 'Ampersand (&) ',
 'Comma (,) ',
 'Double quotation marks (") ',
 ' Leading Blanks');
 result5=CATQ('N',
 'ABC_123 ',
 '123 ',
 'ABC 123');
 put (result1-result5) (=/);
run;

data _null_;
 separator='%%$%%';
 x='The Olympic ';
 y=' Arts Festival ';
 z=' includes works by ';
 a='Dale Chihuly.';
 ResultCat=cat(x,y,z,a);
 ResultCatS=catS(x,y,z,a);
 ResultCatT=catT(x,y,z,a);
 resultCatX=catX(separator,x,y,z,a);
 resultCatXCool=catx(" ",x,y,z,a);
 put "concatinates: " ResultCat= $char.;
 put "Strips and then concatinates: " ResultCatS= $char.;
 put "Trims and then concatinates: " ResultCaTT= $char.;
 put "Strips, adds separator & concatinates: " ResultCatX= $char.;
 put "Useful -> " resultCatXCool= ;
run;
290
1
����252
3
cats(

1
332
1
68
/***/
/*CAT Function CATQ Function CATS Function CATT Function CATX Function

The results of the CAT, CATS, CATT, and CATX functions are usually equivalent to those
that are produced by certain combinations of the concatenation operator (||) and the TRIM and LEFT functions.
However, using the CAT, CATS, CATT, and CATX functions IS FASTER than using TRIM and LEFT,
and you can use them with the OF syntax for variable lists in calling environments that support variable lists.

CAT(OF X1-X4) is the same as X1||X2||X3||X4

CATS(OF X1-X4) is the same as TRIM(LEFT(X1))||TRIM(LEFT(X2))||TRIM(LEFT(X3))||TRIM(LEFT(X4))

CATT(OF X1-X4) is the same as TRIM(X1)||TRIM(X2)||TRIM(X3)||TRIM(X4)

CATX(SP, OF X1-X4) is the same as
 TRIM(LEFT(X1))||SP||TRIM(LEFT(X2))||SP||TRIM(LEFT(X3))||SP||TRIM(LEFT(X4))

CatQ Concatenates character or numeric values by using a delimiter to separate
 items and by adding quotation marks to strings that contain the delimiter.*/
data _null_;
 result1=CATQ(' ',
 'noblanks',
 'one blank',
 12345,
 ' lots of blanks ');
 result2=CATQ('CS',
 'Period (.) ',
 'Ampersand (&) ',
 'Comma (,) ',
 'Double quotation marks (") ',
 ' Leading Blanks');
 result3=CATQ('BCQT',
 'Period (.) ',
 'Ampersand (&) ',
 'Comma (,) ',
 'Double quotation marks (") ',
 ' Leading Blanks');
 result4=CATQ('ADT',
 '#=#',
 'Period (.) ',
 'Ampersand (&) ',
 'Comma (,) ',
 'Double quotation marks (") ',
 ' Leading Blanks');
 result5=CATQ('N',
 'ABC_123 ',
 '123 ',
 'ABC 123');
 put (result1-result5) (=/);
run;

data _null_;
 separator='%%$%%';
 x='The Olympic ';
 y=' Arts Festival ';
 z=' includes works by ';
 a='Dale Chihuly.';
 ResultCat=cat(x,y,z,a);
 ResultCatS=catS(x,y,z,a);
 ResultCatT=catT(x,y,z,a);
 resultCatX=catX(separator,x,y,z,a);
 resultCatXCool=catx(" ",x,y,z,a);
 put "concatinates: " ResultCat= $char.;
 put "Strips and then concatinates: " ResultCatS= $char.;
 put "Trims and then concatinates: " ResultCaTT= $char.;
 put "Strips, adds separator & concatinates: " ResultCatX= $char.;
 put "Useful -> " resultCatXCool= ;
run;
8
1
����252
3
catt(

1
332
1
68
/***/
/*CAT Function CATQ Function CATS Function CATT Function CATX Function

The results of the CAT, CATS, CATT, and CATX functions are usually equivalent to those
that are produced by certain combinations of the concatenation operator (||) and the TRIM and LEFT functions.
However, using the CAT, CATS, CATT, and CATX functions IS FASTER than using TRIM and LEFT,
and you can use them with the OF syntax for variable lists in calling environments that support variable lists.

CAT(OF X1-X4) is the same as X1||X2||X3||X4

CATS(OF X1-X4) is the same as TRIM(LEFT(X1))||TRIM(LEFT(X2))||TRIM(LEFT(X3))||TRIM(LEFT(X4))

CATT(OF X1-X4) is the same as TRIM(X1)||TRIM(X2)||TRIM(X3)||TRIM(X4)

CATX(SP, OF X1-X4) is the same as
 TRIM(LEFT(X1))||SP||TRIM(LEFT(X2))||SP||TRIM(LEFT(X3))||SP||TRIM(LEFT(X4))

CatQ Concatenates character or numeric values by using a delimiter to separate
 items and by adding quotation marks to strings that contain the delimiter.*/
data _null_;
 result1=CATQ(' ',
 'noblanks',
 'one blank',
 12345,
 ' lots of blanks ');
 result2=CATQ('CS',
 'Period (.) ',
 'Ampersand (&) ',
 'Comma (,) ',
 'Double quotation marks (") ',
 ' Leading Blanks');
 result3=CATQ('BCQT',
 'Period (.) ',
 'Ampersand (&) ',
 'Comma (,) ',
 'Double quotation marks (") ',
 ' Leading Blanks');
 result4=CATQ('ADT',
 '#=#',
 'Period (.) ',
 'Ampersand (&) ',
 'Comma (,) ',
 'Double quotation marks (") ',
 ' Leading Blanks');
 result5=CATQ('N',
 'ABC_123 ',
 '123 ',
 'ABC 123');
 put (result1-result5) (=/);
run;

data _null_;
 separator='%%$%%';
 x='The Olympic ';
 y=' Arts Festival ';
 z=' includes works by ';
 a='Dale Chihuly.';
 ResultCat=cat(x,y,z,a);
 ResultCatS=catS(x,y,z,a);
 ResultCatT=catT(x,y,z,a);
 resultCatX=catX(separator,x,y,z,a);
 resultCatXCool=catx(" ",x,y,z,a);
 put "concatinates: " ResultCat= $char.;
 put "Strips and then concatinates: " ResultCatS= $char.;
 put "Trims and then concatinates: " ResultCaTT= $char.;
 put "Strips, adds separator & concatinates: " ResultCatX= $char.;
 put "Useful -> " resultCatXCool= ;
run;
60
1
����252
3
catx(

1
332
1
68
/***/
/*CAT Function CATQ Function CATS Function CATT Function CATX Function

The results of the CAT, CATS, CATT, and CATX functions are usually equivalent to those
that are produced by certain combinations of the concatenation operator (||) and the TRIM and LEFT functions.
However, using the CAT, CATS, CATT, and CATX functions IS FASTER than using TRIM and LEFT,
and you can use them with the OF syntax for variable lists in calling environments that support variable lists.

CAT(OF X1-X4) is the same as X1||X2||X3||X4

CATS(OF X1-X4) is the same as TRIM(LEFT(X1))||TRIM(LEFT(X2))||TRIM(LEFT(X3))||TRIM(LEFT(X4))

CATT(OF X1-X4) is the same as TRIM(X1)||TRIM(X2)||TRIM(X3)||TRIM(X4)

CATX(SP, OF X1-X4) is the same as
 TRIM(LEFT(X1))||SP||TRIM(LEFT(X2))||SP||TRIM(LEFT(X3))||SP||TRIM(LEFT(X4))

CatQ Concatenates character or numeric values by using a delimiter to separate
 items and by adding quotation marks to strings that contain the delimiter.*/
data _null_;
 result1=CATQ(' ',
 'noblanks',
 'one blank',
 12345,
 ' lots of blanks ');
 result2=CATQ('CS',
 'Period (.) ',
 'Ampersand (&) ',
 'Comma (,) ',
 'Double quotation marks (") ',
 ' Leading Blanks');
 result3=CATQ('BCQT',
 'Period (.) ',
 'Ampersand (&) ',
 'Comma (,) ',
 'Double quotation marks (") ',
 ' Leading Blanks');
 result4=CATQ('ADT',
 '#=#',
 'Period (.) ',
 'Ampersand (&) ',
 'Comma (,) ',
 'Double quotation marks (") ',
 ' Leading Blanks');
 result5=CATQ('N',
 'ABC_123 ',
 '123 ',
 'ABC 123');
 put (result1-result5) (=/);
run;

data _null_;
 separator='%%$%%';
 x='The Olympic ';
 y=' Arts Festival ';
 z=' includes works by ';
 a='Dale Chihuly.';
 ResultCat=cat(x,y,z,a);
 ResultCatS=catS(x,y,z,a);
 ResultCatT=catT(x,y,z,a);
 resultCatX=catX(separator,x,y,z,a);
 resultCatXCool=catx(" ",x,y,z,a);
 put "concatinates: " ResultCat= $char.;
 put "Strips and then concatinates: " ResultCatS= $char.;
 put "Trims and then concatinates: " ResultCaTT= $char.;
 put "Strips, adds separator & concatinates: " ResultCatX= $char.;
 put "Useful -> " resultCatXCool= ;
run;
22
1
;���252
3
cdf(

1
332
1
1
cdf('Bernoulli|beta|binomial|Cauchy|chiSquare|exponential|F|gamma|geometric|hyperGeometric|LaPlace|logistic|logNormal|negBinomial|normal|Gauss|normalMix|Pareto|Poissont|uniform|Wald|iGauss|Weibull' , quantile< , shapeLocationOrScaleParameter1< , shapeLocationOrScaleParameter2<...>>>)
241
1
+���252
3
ceil(

1
332
1
60
/*Min Function*/
/*
MEAN Function MEDIAN Function CALL SLEEP Routine SLEEP Function
CEIL Function FLOOR Function INT Function ROUND Function
RANGE Function
*/
data StatExamples;
x=10;
y=200;
i=123;
j=555;
z=1;
m=.;
 put z= x= i= y= j= m=;
MAxExample1=Max(x,y,i,j,z);
 put MAxExample1= ;
MAxExample2=Max(.,x,y,i,j,z);
 put MAxExample2= ;
MinExample1=Min(x,y,i,j,z);
 put MinExample1= ;
MinExample2=Min(.,x,y,i,j,z);
 put MinExample2= ;

MeanExample1=Mean(x,y,i,j,z);
 put MeanExample1= ;
MeanExample2=Mean(x,y, . ,i,j,z);
 put MeanExample2= ;

MedianExample1=Median(x,y,i,j,z);
 put MedianExample1= ;
MedianExample2=Median(x,y, . , i,j,z);
 put MedianExample2= ;

NExample=N(x,y,i,.,.,j,z);
 put "For the function NExample=N(x,y,i,.,.,j,z); " NExample= ;
NMissExample=NMiss(x,y,i,.,.,j,z); /*Missing values*/
 put "For the function NMissExample=NMiss(x,y,i,.,.,j,z); " NMissExample= ;
SumExample=Sum(x,y,i,.,j,z,m); /*Missing values*/
 put SumExample= ;

CeilExample =ceil(5.4637);
 put "CeilExample =ceil(5.4637) " CeilExample= ;
FloorExample =Floor(5.4637);
 put "FloorExample =Floor(5.4637) " FloorExample= ;
IntExample =Int(5.4637);
 put "IntExample =Int(5.4637);" IntExample= ;

RoundExample1=Round(5.4637,0.1);
 put "RoundExample1=Round(5.4637,0.1)" RoundExample1= ;
RoundExample2=Round(5.4637,0.01);
 put "RoundExample2=Round(5.4537,0.01);" RoundExample2= ;
RoundExample3=Round(5.4637,0.001);
 put "RoundExample3=Round(5.4637,0.001);" RoundExample3=;

RangeExample1=range(x,y,i,j,z);
 put "RangeExample1=range(x,y,i,j,z);" RangeExample1=;
RangeExample2=range(.,.,x,y,i,j,z); /*Missing values*/
 put "RangeExample2=range(.,.,x,y,i,j,z);" RangeExample2=;
;
run;
315
1
Ž���252
3
ceilz(

1
332
1
2
ceilZ(number)
Returns the smallest integer that is greater than or equal to the argument, using zero fuzzing.
316
1
Æ���252
3
CharFormatLookup

1
332
1
55

** this is the code for a CHARACTER version of figure 1- not in sleds;
*character table lookup SEE APPENDIX;
data CH_small;
infile datalines missover;
Input @1 Char_zip $char5.;
datalines;
23116
12554
08443
;
run;
data CH_large;
infile datalines;
input @1 pat_id @7 state $ @10 zip_cd $char5.;
datalines;
12554 PA 19003
11121 NJ 08554
44444 MD 21332
99999 NJ 08443
23116 MA 62231
99332 PA 19104
33333 DE 23116
22222 WA 00000
33333 WY 99999
;
run;
*make zipcodes from small file into a format;
data NwCHFmt(keep= fmtname start label type hlo);
retain FMTNAME "ZIP_CH" TYPE "C" LABEL "YES";
set CH_small (rename=(Char_ZIP=start)) end=last;
output;
if last=1 then do;
	Hlo="O"; label="Other" ;
	start= .;
	output;
end;
run;

proc format cntlin= NwCHFmt; run;
/* see the internal file
proc format cntlout= CH_look;
	select $ZIP_CH;
run;
proc print data=CH_look;
	title "Character format - note that	the data is now in ascending order";
run;
*/
DATA IN_SML_CH;
SET CH_large;
If PUT(ZIP_cd,$ZIP_CH.)="YES";/*Uncomment this line 2 select only obs in small*/
RUN;
proc print data=IN_Sml_CH;
run;

294
1
����252
3
choosec(

1
332
1
43
/*ChooseC ChooseN
Returns a character value that represents the results of choosing from a list of arguments.
CHOOSEN Function
Returns a numeric value that represents the results of choosing from a list of arguments.

*/
data _null_;
/*Returns a character value that represents the results of choosing from a list of arguments.
CHOOSEC (index-expression, selection-1 <,...selection-n>)
index-expression specifies a numeric constant, variable, or expression.
selection specifies a character constant, variable, or expression.
The value of this argument is returned by the CHOOSEC function.

*/
 Fruit =chooseC(1,'apple','orange','pear','fig');
 Color =chooseC(3,'red','blue','green','yellow');
 Planet=chooseC(2,'Mars','Mercury','Uranus');
 /*And counitng from right to left*/
 Sport =chooseC(-3,'soccer','baseball','gymnastics','skiing');
 put Fruit= Color= Planet= ;
		/*Fruit=apple Color=green Planet=Mercury Sport=baseball */
 put "We can count from Right to left" Sport=;

	/*CHOOSEN (index-expression, selection-1 <,...selection-n>)
	index-expression specifies a numeric constant, variable, or expression.
	selection specifies a numeric constant, variable, or expression.
 The value of this argument is returned by the CHOOSEN function.
 The CHOOSEN function uses the value of index-expression to select from the arguments that follow.
 For example, if index-expression is 3, CHOOSEN returns the value of selection-3.
 If the first argument is negative, the function counts backwards from the list of arguments, and returns that value.

 */
 ItemNumber=choosen(5,100,50,3784,498,679);
 Rank=choosen(-2,1,2,3,4,5);
 Score=choosen(3,193,627,33,290,5);
 Value=choosen(-5,-37,82985,-991,3,1014,-325,3,54,-618);
 put ItemNumber= Rank= Score= Value=;
 /*ItemNumber=679 Rank=4 Score=33 Value=1014*/
run;

25
1
����252
3
choosen(

1
332
1
43
/*ChooseC ChooseN
Returns a character value that represents the results of choosing from a list of arguments.
CHOOSEN Function
Returns a numeric value that represents the results of choosing from a list of arguments.

*/
data _null_;
/*Returns a character value that represents the results of choosing from a list of arguments.
CHOOSEC (index-expression, selection-1 <,...selection-n>)
index-expression specifies a numeric constant, variable, or expression.
selection specifies a character constant, variable, or expression.
The value of this argument is returned by the CHOOSEC function.

*/
 Fruit =chooseC(1,'apple','orange','pear','fig');
 Color =chooseC(3,'red','blue','green','yellow');
 Planet=chooseC(2,'Mars','Mercury','Uranus');
 /*And counitng from right to left*/
 Sport =chooseC(-3,'soccer','baseball','gymnastics','skiing');
 put Fruit= Color= Planet= ;
		/*Fruit=apple Color=green Planet=Mercury Sport=baseball */
 put "We can count from Right to left" Sport=;

	/*CHOOSEN (index-expression, selection-1 <,...selection-n>)
	index-expression specifies a numeric constant, variable, or expression.
	selection specifies a numeric constant, variable, or expression.
 The value of this argument is returned by the CHOOSEN function.
 The CHOOSEN function uses the value of index-expression to select from the arguments that follow.
 For example, if index-expression is 3, CHOOSEN returns the value of selection-3.
 If the first argument is negative, the function counts backwards from the list of arguments, and returns that value.

 */
 ItemNumber=choosen(5,100,50,3784,498,679);
 Rank=choosen(-2,1,2,3,4,5);
 Score=choosen(3,193,627,33,290,5);
 Value=choosen(-5,-37,82985,-991,3,1014,-325,3,54,-618);
 put ItemNumber= Rank= Score= Value=;
 /*ItemNumber=679 Rank=4 Score=33 Value=1014*/
run;

24
1
[���252
3
cinv(

1
332
1
1
cInv(numericProbability , degreesOfFreedom , nonCentrality)
260
1
L���252
3
cnonct(

1
332
1
1
cNonCt(x , degreesOfFreedom , probability)
214
1
³���252
3
coalesce(

1
332
1
24
/*Coalesce */
/*coalesceC(string1< , string2<...>>)*/
/*Returns the first non-missing value from a list of character arguments. */
data _null_;
x = COALESCE(42, .);
Put "x = COALESCE(42, .); " x= ;

y = COALESCE(.A, .B, .C);
Put "y = COALESCE(.A, .B, .C); " y= ;

z = COALESCE(., 7, ., ., 42);
Put "z = COALESCE(., 7, ., ., 42); " z= ;
run;

data _null_;
 ItemNumber=choosen(5,100,50,3784,498,679);
 Rank=choosen(-2,1,2,3,4,5);
 Score=choosen(3,193,627,33,290,5);
 Value=choosen(-5,-37,82985,-991,3,1014,-325,3,54,-618);
 put ItemNumber= Rank= Score= Value=;
run;

/*ItemNumber=679 Rank=4 Score=33 Value=1014*/

215
1
G���252
3
coalescec(

1
332
1
1
coalesceC(string1< , string2<...>>)
61
1
o���252
3
collate(

1
332
1
1
collate(startPosition< , endPosition>) | collate(startPosition< , , length>)
28
1
A���252
3
comb(

1
332
1
1
comb(sizeOfUniverse , sampleSize)
216
1
š���252
3
compare(

1
332
1
9
/*compare Returns the position of the leftmost character by which two strings differ,
 or returns 0 if there is no difference.*/
data test2;
 pad1=compare('abc','abc ');
 pad2=compare('abc','abcdef ');
 truncate1=compare('abc','abcdef',':');
 truncate2=compare('abcdef','abc',':');
 blank=compare('','abc', ':');
run;
30
1
.���252
3
compbl(

1
332
1
11
compBl(string)
Removes multiple blanks from a character string.
data _null_;
 string='Hey Diddle Diddle';
 string2=compbl(string);
 put string= String2=;

address='125 E Main St';
 address2=compbl(ADDRESS);
 put address= ADDRESS2=;
RUN;
62
1
Ï���252
3
compged(

1
332
1
106
/*Compged Complev soundex Speedis*/
/*CompGed Returns the generalized edit distance between two strings. */
/*Soundex Encodes a string to facilitate searching. */
/*Speedis Determines the likelihood of two words matching,*/
data test;
 infile datalines missover;
 input String1 $char8. +1 String2 $char8. +1 Operation $40.;
 GED=CompGed(string1, string2);
 datalines;
baboon baboon match
baXboon baboon insert
baoon baboon delete
baXoon baboon replace
baboonX baboon append
baboo baboon truncate
babboon baboon double
babon baboon single
baobon baboon swap
bab oon baboon blank
bab,oon baboon punctuation
bXaoon baboon insert+delete
bXaYoon baboon insert+replace
bXoon baboon delete+replace
Xbaboon baboon finsert
aboon baboon trick question: swap+delete
Xaboon baboon freplace
axoon baboon fdelete+replace
axoo baboon fdelete+replace+truncate
axon baboon fdelete+replace+single
baby baboon replace+truncate*2
balloon baboon replace+insert
;

proc print data=test label;
 label GED='Generalized Edit Distance';
 var String1 String2 GED Operation;
run;

/*COMPLEV Function Returns the Levenshtein edit distance between two strings. */
options pageno=1 nodate ls=80 ps=60;

data test;
 infile datalines missover;
 input string1 $char8. string2 $char8. modifiers $char8.;
 result=CompLev(string1, string2, modifiers);
 datalines;
1234567812345678
abc abxc
ac abc
aXc abc
aXbZc abc
aXYZc abc
WaXbYcZ abc
XYZ abcdef
aBc abc
aBc AbC i
 abc abc
 abc abc l
AxC 'abc'n
AxC 'abc'n n
;

proc print data=test;
run;

/*The SOUNDEX function encodes a character string according to an algorithm that was originally developed */
/*by Margaret K. Odell and Robert C. Russel (US Patents 1261167 (1918) and 1435663 (1922)). */
/*The algorithm is described in Knuth, The Art of Computer Programming, Volume 3. (See References.) */
/*Note that the SOUNDEX algorithm is English-biased and is less useful for languages other than English.*/
data _Null_;
x=soundex('Paul');
put x;

word='amnesty';
x=soundex(word);
put x;
;
run;

/*Speedis Determines the likelihood of two words matching,
 expressed as the asymmetric spelling distance between the two words.*/
data words;
 input Operation $ Query $ Keyword $;
 Distance = spedis(query,keyword);
 Cost = distance * length(query);
 datalines;
match fuzzy fuzzy
singlet fuzy fuzzy
doublet fuuzzy fuzzy
swap fzuzy fuzzy
truncate fuzz fuzzy
append fuzzys fuzzy
delete fzzy fuzzy
insert fluzzy fuzzy
replace fizzy fuzzy
firstdel uzzy fuzzy
firstins pfuzzy fuzzy
firstrep wuzzy fuzzy
several floozy fuzzy
;

proc print data = words;
run;

31
1
Z���252
3
compled(

1
332
1
1
compLED(string1 , string2< , cutoff>< , '<i><l><n><:>'>)
32
1
X���252
3
compress(

1
332
1
20
compress(source<, charsToRemove><, '<a><c><d><f><g><i><k><l><n><o><p><s><t><u><w><x>'>)
Returns a character string with specified characters removed from the original string.

Syntax COMPRESS(<source><, chars><, modifiers>)
source specifies a character constant, variable, or expression from which specified characters will be removed.
chars specifies a character constant, variable, or expression that initializes a list of characters.

By default, the characters in this list are removed from the source argument.
If you specify the K modifier in the third argument, then only the characters in this list are kept in the result.

Number of Arguments Result
only the first argument, source The argument has all blanks removed.
 If the argument is completely blank, then the result is a string with a length of zero.
 If you assign the result to a character variable with a fixed length,
 then the value of that variable will be padded with blanks to fill its defined length.
The first two arguments, source and chars All characters that appear in the second argument are removed
 from the result.
Three arguments, source, chars, and modifier(s)
 The K modifier (specified in the third argument)
 determines whether the characters in the second argument are kept or removed from the result.
37
1
X���252
3
Compressed_Index__IORC_into_The_Compressed_Index

1
332
1
74
/***
Section __: Compressed_Index__IORC_into_The_Compressed_Index

Compressed Index: Use an IORC into The Compressed Index
 to manulaly control (?) the read ahead and force index use

Create the datqa sets
**/

Options nocenter;
Proc SQL;
create table WantInfo
 (SID Char(4) , Sex Char(1));
insert into WantInfo
values("0001","F")
values("3999","F")
values("2222","M")
values("3134","F")
/*values("6090","M")*/
values("7777","M");
quit;

proc print data=Wantinfo;
title "Wantinfo";
run;

Proc SQL;
Create table SWantInfo as
select * from WantINfo Order by SID;

proc print data=swantinfo;
title "swantinfo";
run;

proc sql;
Create table SDupIn
(SID char(4) , test Char(1));
insert into SDupIn
values("0001","N") /*match*/
values("2222","A") /*match*/
values("2222","N") /*match*/
values("2222","A") /*match*/
values("2999","N")
values("3453","A")
values("3453","N")
values("3999","A"); /*match*/
quit;

/***
Section __: 7C Compressed index and IORC lookup into the compressed index
Dupes in LARGE file: lARGE file is sorted ** Index on Compressed index file
**/
Data CmprIndx(drop= test index=(SID));
 RETAIN SID StartAt EndAt;
SET SDupIn;
by SID;
IF FIRST.sid=1 THEN StartAt=_N_;
if last.SID=1 then DO;
 EndAt=_N_; Output;
 END;
run;

Data Example7C;
set WantInfo ;
SET CmprIndx key=SID / unique;
if _IORC_ NE 0 then
 do;
 error=0;
 delete;
 end;
do Pointer=StartAt to EndAt;
 set SDupIn point=Pointer;
 output;
end; run;
308
1
D	��252
3
Compressed_Index_Basic

1
332
1
107
/**
Compressed_Index_Basic

Compressed Index: Basic

Section: 0- Create data sets
***/
Options nocenter;
Proc SQL;
create table WantInfo
 (SID Char(4) , Sex Char(1));
insert into WantInfo
values("0001","F")
values("3999","F")
values("2222","M")
values("3134","F")
/*values("6090","M")*/
values("7777","M");

proc print data=Wantinfo;
title "Wantinfo";
run;

Proc SQL;
Create table SWantInfo as
select * from WantINfo Order by SID;

proc print data=swantinfo;
title "swantinfo";
run;

proc SQL;
Create table BigLookIn
(SID char(4) , ARM Char(1));
insert into BigLookIn
values("8811","A")
values("9033","B")
values("9099","A")
values("2999","B")
values("3453","A")
values("3999","B")
values("4444","A")
values("4766","A")
values("5020","B")
values("0001","A")
values("0099","B")
values("1005","B")
values("1087","B")
values("2111","A")
values("5111","A")
values("6090","A")
values("6888","B")
values("7666","A")
values("7777","B")
values("8188","A");

/*Proc Print data=BigLookIn;*/
/*run;*/

Create table SBigLookIn as
select * from BigLookIn order by SID;

Create table SDupIn
(SID char(4) , test Char(1));
insert into SDupIn
values("0001","N") /*match*/
values("2222","A") /*match*/
values("2222","N") /*match*/
values("2222","A") /*match*/
values("2999","N")
values("3453","A")
values("3453","N")
values("3999","A"); /*match*/
quit;

proc print data=SBigLookIn;
title "SBigLookIn";
run;

/**
Section:_7A_ First use of compressed index Mark Keintz
***/
Data CmprIndx; /*Create the comprtessed index on the large file*/
 RETAIN SID StartAt EndAt;
SET SDupIn;
by SID;
IF FIRST.sid=1 THEN StartAt=_N_;
if last.SID=1 then DO;
 EndAt=_N_; Output; END; run;

proc SQL;
drop index SID from CmprIndx;
run;

data Example7A/DEBUG;
Merge SWantInfo(in=SWant) CmprIndx(In=Cmp);
by SID;
if SWant * Cmp;
/*SET CmprsdIndx key=SID / unique; */
do Pointer=StartAt to EndAt;
 set SDupIn point=Pointer;
 output;
end; run;

Proc Print data=Example7A;
RUN;
384
1
Õ
��252
3
CompressedIndex_Index

1
332
1
116
/**
CompressedIndex_Index

Compressed Index: Index on the compressed index file
 with SAS manageing any read akead

Section: 0- Create data sets
***/
Options nocenter;
Proc SQL;
create table WantInfo
 (SID Char(4) , Sex Char(1));
insert into WantInfo
values("0001","F")
values("3999","F")
values("2222","M")
values("3134","F")
/*values("6090","M")*/
values("7777","M");

proc print data=Wantinfo;
title "Wantinfo";
run;

Proc SQL;
Create table SWantInfo as
select * from WantINfo Order by SID;

proc print data=swantinfo;
title "swantinfo";
run;

proc SQL;
Create table BigLookIn
(SID char(4) , ARM Char(1));
insert into BigLookIn
values("8811","A")
values("9033","B")
values("9099","A")
values("2999","B")
values("3453","A")
values("3999","B")
values("4444","A")
values("4766","A")
values("5020","B")
values("0001","A")
values("0099","B")
values("1005","B")
values("1087","B")
values("2111","A")
values("5111","A")
values("6090","A")
values("6888","B")
values("7666","A")
values("7777","B")
values("8188","A");

/*Proc Print data=BigLookIn;*/
/*run;*/

Create table SBigLookIn as
select * from BigLookIn order by SID;

Create table SDupIn
(SID char(4) , test Char(1));
insert into SDupIn
values("0001","N") /*match*/
values("2222","A") /*match*/
values("2222","N") /*match*/
values("2222","A") /*match*/
values("2999","N")
values("3453","A")
values("3453","N")
values("3999","A"); /*match*/
quit;

proc print data=SBigLookIn;
title "SBigLookIn";
run;

/**
Section:_7B_ Condensed index V1 - Mark Kentz - WORDS UPenn s
***/
Options nocenter;
/*Build index on all of big file*/
Data CmprsdIndx(index=(SID)); /*create an indexed "compressed index" file*/
RETAIN SID StartAt EndAt;
SET SDupIn;
by SID;
IF FIRST.sid=1 THEN StartAt=_N_;
if last.SID=1 then
		DO;
		EndAt=_N_;
		Output;
		END;
run;

/*We do not want to read ALL of the compressed index, only rows in WantINfo*/
Proc SQL;
select quote(SID) into :WantThese separated by "," from WantInfo; /*Options are good*/
quit;
%put _user_;

options mlogic mprint symbolgen fullstimer msglevel=i;
data Example7B /DEBUG;
SET CmprsdIndx(where=(SID in (&WantThese))); /*let SAS decide if it should use the index*/
 /*read the file that tells us what obs we want - likely to be small*/
do Pointer=StartAt to EndAt;
 set SDupIn point=Pointer;
 output;
end;
run;

Proc Print data=Example7B;
run;
385
1
Â���252
3
CompressedIndex_ReadAheadManagedBy SAS

1
332
1
53
/*Compressed Index_Hierarchical With Read Ahead managed by SAS*/
/*Courtesy of Mark Keintx www.nesug.org/Proceedings/nesug08/bb/bb10.pdf */
/*If SAS knows it is reading a seriess of obs in Sequence*/
 /*,it will guess where you want the next read to happen*/
 /*and pre-position the hard drive head - reading ahead of your request for data*/
 /*this can make for a very fast read*/
proc sort data=sashelp.class out=SortedClass;
	by sex age; /*data set must be sorted*/
	run;

/*Create Hierarchcal Compressed Index ONCE - in the middle of the night?*/
data HCompInd(keep= sex age ReadFrom ReadTo);
	retain ReadFrom readTo;
	set SortedClass;
	by sex age;
	if first.age then ReadFrom=_n_;
	if last.age then
		do;
		ReadTo=_n_;
		output;
		end;	
	run;

Proc print data=HCompINd;
run;

/*Use the compressed index to generate macro variable*/
/*This is the key to having SAS manage the read ahead*/
data _null_;
	retain RangeList ;
 length RangeList $ 32700;
		/*This will hold the syntax for the read and be loaded into a macro*/
	set HCompInd end=EOF;
	** Read the parts of the Hierarchcal Compressed Index file that are of interest**;
	where Age=12 or Sex="M";
	Thisrange= catx(" ",cats("(firstobs=",ReadFrom),cats("obs=",ReadTo,")"));
	RangeList=catx(" ",RangeList,"SortedClass",Thisrange); /*concatinate the */
	if EOF=1 then
		do;
		call symput("ThisRange",trim(ThisRange)); /*just for checking*/
		call symput("RangeList",trim(RangeList));
		end;	
run;
%put &ThisRange;
%put &RangeList;

data SubsetOfSortedClass;
	set &RangeList open=defer;
run;

proc print data=subsetOfSortedClass;
run;

386
1
Â���252
3
CompressedIndexWReadAhead

1
332
1
26
/***CompressedINdexWReadAdhead***/
/*Courtesy of Mark Keintz*/
/*Use a data step to put out set statements into macro variables*/
data _null_;
retain RangeList ;
length RangeList $ 32700;
set SexAgeComprIndxOnClass end=EOF;
where age=12 or Sex="M"; /*select rows from compressed index*/
range=catx(" ",cats('(Firstobs=',StartHere),cats('obs=',Endhere,')'));
RangeList=catx(' ',RangeList,'ClassBySexNAge',range);
if EOF then
 call symput('SetList', trim(Rangelist));
 run;

%put &SetList;

 data ReadAheadDataPull;
	set
	&setlist
	open=Defer; /*SAS only opens one infle buffer*/
	run;

	proc print data=ReadAheadDataPull;
	run;

295
1
´���252
3
CompressedIndexwWPoint

1
332
1
27
/*Compressed Index W Point**/
/*Courtesy of Make Keintz*/
/*build the compressed Index on Age;*/
data ComprIndxonClass;
retain StartHere;
set ClassByAge(keep=age);
by age; /*this creates first.name and last.name*/
if first.age=1 then StartHere=_n_;
if last.age=1 then
		do;
		EndHere =_n_;
		output;
		end;
run;
proc print data=ComprIndxonClass;
run;

data ObsPulledUsingPointer;
 /*bring in first and last obs for this age*/
set ComprIndxonClass(where=(age=13));
do p=StartHere to EndHere;
	set classByAge point=p;/*Use point= control to read obs*/
	output;
end;
run;
proc print data=ObsPulledUsingPointer;
run;
291
1
Ê���252
3
constant(

1
332
1
1
constant('e'|'Euler'|'pi'|'exactInt'< , nBytes>|'big'|'logBig'< , base>|'sqRtBig'|'small'|'logSmall'< , base>|'sqRtSmall'|'macEps'|'logMacEps'< , base >|'sqRtMacEps')
217
1
(���252
3
cos(

1
332
1
1
cos(number)
312
1
V���252
3
count(

1
332
1
142
/*FIND FINDC FINDW Count CountW CountC
 (These might eb better than Verify , index , indexc and indexw)
The find Function returns the character position
 of a specific substring of characters within a character string.
The FINDC function returns the character position
 of the first encountered character from a group of individual characters
The FindW Funcion returns the character position of a word in a string,

The FIND group of functions and the INDEX group of functions
 both search for substrings of characters in a character string.
 However, the INDEX functions do not have the modifiers nor the startpos arguments.

The FINDC function searches for individual characters in a character string,
 whereas the FIND function searches for substrings of characters in a character string.

The FINDC function and the INDEXC function both search for individual characters in a character string.
 However, the INDEXC function does not have the modifier nor the startpos arguments.

The FINDC function searches for individual characters in a character string,
 whereas the VERIFY function searches for the first character that is unique to an expression.
 The VERIFY function does not have the modifier nor the startpos arguments.

Count Counts the number of times that a specified substring appears within a character string.
CountW Counts the number of words in a character string.
CountC Counts the number of characters in a string that appear or do not appear in a list of characters.
*/

data _null_;
/*Find FIND function searches for substrings of characters in a character string*/
WhereIsShe=find('She sells seashells? Yes, she does.','she ');
put WhereIsShe;

variable1='She sells seashells? Yes, she does.';
variable2='she ';
variable3='i';
WhereIsShe_i=find(variable1,variable2,variable3);
put WhereIsShe_i;

expression1='She sells seashells? '||'Yes, she does.';
expression2=kscan('he or she',3)||' ';
expression3=trim('t ');
WhereIsShe_t=find(expression1,expression2,expression3);
put WhereIsShe_t;

xyz='She sells seashells? Yes, she does.';
startposvar=22;
WhereIsShe_22=find(xyz,'she',startposvar);

/*FindW Returns the character position of a word in a string, or returns the number of the word in a string. */
WhereIsShe_W1=findw('She sells sea shells? Yes, she does.','she');
 put WhereIsShe_W1=;
/*Only the second occurrence is found by FINDW because the search begins in position 25.
 The chars argument specifies a space as the delimiter. */
 result = findw('At least 2.5 meters of rain falls in a rain forest.',
 'rain', ' ', 25);
 put result=;

/*FindC Searches a string for any character in a list of characters. */

/*count*/
xyz='This is a thistle? Yes, this is a thistle.';
HowManyThis=count(xyz,'this');
put HowManyhis;

xyz='This is a thistle? Yes, this is a thistle.';
HowManyIs=count(xyz,'is');
put HowManyIs;

HowManyhis_i=count('This is a thistle? Yes, this is a thistle.'
 ,'this','i');
put HowManyhis_i;

variable1='This is a thistle? Yes, this is a thistle.';
variable2='is ';
variable3='i';
HowManyIs_i=count(variable1,variable2,variable3);
put HowManyIs_i;

expression1='This is a thistle? '||'Yes, this is a thistle.';
expression2=kscan('This is',2)||' ';
expression3=compress('i '||' t');
howmanyis_it=count(expression1,expression2,expression3);
put howmanyis_it;

put WhereIsShe_22;

xyz='She sells seashells? Yes, she does.';
startposexp=1-23;
whereisShe_ineg22=find(xyz,'She','i',startposexp);
put whereisShe_ineg22;

Run;

/*CountW*/
/*The following example shows how to use the COUNTW function with the M and P modifiers. */
options ls=64 pageno=1 nodate;
data test;
 length default blanks mp 8;
 input string $char60.;
 default = CountW(string);
 blanks = CountW(string, ' ');
 mp = CountW(string, 'mp');
 datalines;
The quick brown fox jumps over the lazy dog.
 Leading blanks
2+2=4
/unix/path/names/use/slashes
\Windows\Path\Names\Use\Backslashes
;
run;

proc print noobs data=test;
run;

/*CountC*/
/*The following example uses the COUNTC function with and without modifiers to count the number of characters in a string. */

data test;
 string = 'Baboons Eat Bananas ';
 a = countc(string, 'a');
 b = countc(string,'b');
 b_i = countc(string,'b','i');
 abc_i = countc(string,'abc','i');
 /* Scan string for characters that are not "a", "b", */
 /* and "c", ignore case, (and include blanks). */
 abc_iv = countc(string,'abc','iv');
 /* Scan string for characters that are not "a", "b", */
 /* and "c", ignore case, and trim trailing blanks. */
 abc_ivt = countc(string,'abc','ivt');
run;

options pageno=1 ls=80 nodate;
proc print data=test noobs;
run;

43
1
W���252
3
countc(

1
332
1
142
/*FIND FINDC FINDW Count CountW CountC
 (These might eb better than Verify , index , indexc and indexw)
The find Function returns the character position
 of a specific substring of characters within a character string.
The FINDC function returns the character position
 of the first encountered character from a group of individual characters
The FindW Funcion returns the character position of a word in a string,

The FIND group of functions and the INDEX group of functions
 both search for substrings of characters in a character string.
 However, the INDEX functions do not have the modifiers nor the startpos arguments.

The FINDC function searches for individual characters in a character string,
 whereas the FIND function searches for substrings of characters in a character string.

The FINDC function and the INDEXC function both search for individual characters in a character string.
 However, the INDEXC function does not have the modifier nor the startpos arguments.

The FINDC function searches for individual characters in a character string,
 whereas the VERIFY function searches for the first character that is unique to an expression.
 The VERIFY function does not have the modifier nor the startpos arguments.

Count Counts the number of times that a specified substring appears within a character string.
CountW Counts the number of words in a character string.
CountC Counts the number of characters in a string that appear or do not appear in a list of characters.
*/

data _null_;
/*Find FIND function searches for substrings of characters in a character string*/
WhereIsShe=find('She sells seashells? Yes, she does.','she ');
put WhereIsShe;

variable1='She sells seashells? Yes, she does.';
variable2='she ';
variable3='i';
WhereIsShe_i=find(variable1,variable2,variable3);
put WhereIsShe_i;

expression1='She sells seashells? '||'Yes, she does.';
expression2=kscan('he or she',3)||' ';
expression3=trim('t ');
WhereIsShe_t=find(expression1,expression2,expression3);
put WhereIsShe_t;

xyz='She sells seashells? Yes, she does.';
startposvar=22;
WhereIsShe_22=find(xyz,'she',startposvar);

/*FindW Returns the character position of a word in a string, or returns the number of the word in a string. */
WhereIsShe_W1=findw('She sells sea shells? Yes, she does.','she');
 put WhereIsShe_W1=;
/*Only the second occurrence is found by FINDW because the search begins in position 25.
 The chars argument specifies a space as the delimiter. */
 result = findw('At least 2.5 meters of rain falls in a rain forest.',
 'rain', ' ', 25);
 put result=;

/*FindC Searches a string for any character in a list of characters. */

/*count*/
xyz='This is a thistle? Yes, this is a thistle.';
HowManyThis=count(xyz,'this');
put HowManyhis;

xyz='This is a thistle? Yes, this is a thistle.';
HowManyIs=count(xyz,'is');
put HowManyIs;

HowManyhis_i=count('This is a thistle? Yes, this is a thistle.'
 ,'this','i');
put HowManyhis_i;

variable1='This is a thistle? Yes, this is a thistle.';
variable2='is ';
variable3='i';
HowManyIs_i=count(variable1,variable2,variable3);
put HowManyIs_i;

expression1='This is a thistle? '||'Yes, this is a thistle.';
expression2=kscan('This is',2)||' ';
expression3=compress('i '||' t');
howmanyis_it=count(expression1,expression2,expression3);
put howmanyis_it;

put WhereIsShe_22;

xyz='She sells seashells? Yes, she does.';
startposexp=1-23;
whereisShe_ineg22=find(xyz,'She','i',startposexp);
put whereisShe_ineg22;

Run;

/*CountW*/
/*The following example shows how to use the COUNTW function with the M and P modifiers. */
options ls=64 pageno=1 nodate;
data test;
 length default blanks mp 8;
 input string $char60.;
 default = CountW(string);
 blanks = CountW(string, ' ');
 mp = CountW(string, 'mp');
 datalines;
The quick brown fox jumps over the lazy dog.
 Leading blanks
2+2=4
/unix/path/names/use/slashes
\Windows\Path\Names\Use\Backslashes
;
run;

proc print noobs data=test;
run;

/*CountC*/
/*The following example uses the COUNTC function with and without modifiers to count the number of characters in a string. */

data test;
 string = 'Baboons Eat Bananas ';
 a = countc(string, 'a');
 b = countc(string,'b');
 b_i = countc(string,'b','i');
 abc_i = countc(string,'abc','i');
 /* Scan string for characters that are not "a", "b", */
 /* and "c", ignore case, (and include blanks). */
 abc_iv = countc(string,'abc','iv');
 /* Scan string for characters that are not "a", "b", */
 /* and "c", ignore case, and trim trailing blanks. */
 abc_ivt = countc(string,'abc','ivt');
run;

options pageno=1 ls=80 nodate;
proc print data=test noobs;
run;

44
1
Œ���252
3
countw

1
332
1
89
count(string , substring< , '<i><t>'>)
Counts the number of times that a specified substring appears within a character string.
The COUNT function counts substrings of characters in a character string,
 whereas the COUNTC function counts individual characters in a character string.

data _null_;
 xyz='This is a thistle? Yes, this is a thistle.';
 howmanythis1=count(xyz,'this');
 put xyz= "**->" howmanythis1=;

 howmanyis=count(xyz,'is');
 put howmanyis=;

 howmanythis_i=count('This is a thistle? Yes, this is a thistle.','this','i');
 put xyz= "**->" howmanythis_i=;

 variable1='This is a thistle? Yes, this is a thistle.';
 variable2='is ';
 variable3='i';
 howmanyis_i=count(variable1,variable2,variable3);
 put howmanyis_i=;

 expression1='This is a thistle? '||'Yes, this is a thistle.';
 expression2=kscan('This is',2)||' ';
 expression3=compress('i '||' t');
 howmanyis_it=count(expression1,expression2,expression3);
 put howmanyis_it=;
run;

countC(string , characters< , '<i><o><t><v>'>)
data test;
 string = 'Baboons Eat Bananas ';
 a = countc(string, 'a');
 b = countc(string,'b');
 b_i = countc(string,'b','i');
 abc_i = countc(string,'abc','i');
 /* Scan string for characters that are not "a", "b", */
 /* and "c", ignore case, (and include blanks). */
 abc_iv = countc(string,'abc','iv');
 /* Scan string for characters that are not "a", "b", */
 /* and "c", ignore case, and trim trailing blanks. */
 abc_ivt = countc(string,'abc','ivt');
run;

COUNTW(<string><, chars><, modifiers>) Counts the number of words in a character string.
modifier
specifies a character constant, variable, or expression in which each non-blank character modifies
 the action of the COUNTW function.
a or A adds alphabetic characters to the list of characters.
b or B counts from right to left instead of from left to right. Right-to-left counting makes a difference only when you use the Q modifier and the string contains unbalanced quotation marks.
c or C adds control characters to the list of characters.
d or D adds digits to the list of characters.
f or F adds an underscore and English letters (that is, the characters that can begin a SAS variable name using VALIDVARNAME=V7) to the list of characters.
g or G adds graphic characters to the list of characters.
h or H adds a horizontal tab to the list of characters.
i or I ignores the case of the characters.
k or K causes all characters that are not in the list of characters to be treated as delimiters. If K is not specified, then all characters that are in the list of characters are treated as delimiters.
l or L adds lowercase letters to the list of characters.
m or M specifies that multiple consecutive delimiters, and delimiters at the beginning or end of the string argument, refer to words that have a length of zero. If the M modifier is not specified, then multiple consecutive delimiters are treated as one delimiter, and delimiters at the beginning or end of the string argument are ignored.
n or N adds digits, an underscore, and English letters (that is, the characters that can appear after the first character in a SAS variable name using VALIDVARNAME=V7) to the list of characters.
o or O processes the chars and modifier arguments only once, rather than every time the COUNTW function is called. Using the O modifier in the DATA step (excluding WHERE clauses), or in the SQL procedure, can make COUNTW run faster when you call it in a loop where chars and modifier arguments do not change.
p or P adds punctuation marks to the list of characters.
q or Q ignores delimiters that are inside of substrings that are enclosed in quotation marks. If the value of string contains unmatched quotation marks, then scanning from left to right will produce different words than scanning from right to left.
s or S adds space characters (blank, horizontal tab, vertical tab, carriage return, line feed, and form feed) to the list of characters.
t or T trims trailing blanks from the string and chars arguments.
u or U adds uppercase letters to the list of characters.
w or W adds printable characters to the list of characters.
x or X adds hexadecimal characters to the list of characters.

data test;
 length default blanks mp 8;
 input string $char60.;
 default = countw(string);
 blanks = countw(string, ' ');
 mp = countw(string, 'mp');
 datalines;
The quick brown fox jumps over the lazy dog.
 Leading blanks
2+2=4
/unix/path/names/use/slashes
\Windows\Path\Names\Use\Backslashes
;
run;

proc print noobs data=test;
run;

206
1
<���252
3
css(

1
332
1
1
css(number1< , number2<...>>)
165
1
:���252
3
cv(

1
332
1
1
cv(number1< , number2<...>>)
166
1
,���252
3
dairy(

1
332
1
1
dAiry(number)
218
1
Y���252
3
datdif(

1
332
1
1
datdif(datDif(startDate , endDate , '30/360'|'ACT/ACT')
49
1
u���252
3
date(

1
332
1
51
/*DATE Function DATEPART Function DATETIME Function DAY Function INTCK Function
INTNX Function MDY Function TIME Function TIMEPART Function TODAY Function*/

data _null_;
TodayDate=date(); /*Reads system clock*/
TodayToday=today(); /*Reads system clock*/
ThisInstant=DateTime(); /*Reads system clock*/
put TodayDate= TodayToday= ThisInstant=;
break=repeat("*",40);
put break;

DayFromDateTime=DatePart(ThisInstant); /*argument must be DateTime - NOT DATE*/

/*intck counts "time periods" between dates
 AND is tricky - read the documentation nad Bruce Gleason's paper*/
DaysBetween1=intck("day","1JAN00"D,"12JAN00"D);
put DaysBetween1=;
DaysBetween2=intck("day","12JAN00"D,"1JAN00"D);
put DaysBetween2=;

WeeksBetween1=intck("week","1JAN00"D,"12JAN00"D);
put WeeksBetween1=;
WeeksBetween2=intck("week","12JAN00"D,"1JAN00"D);
put WeeksBetween2=;

WeeksBetween3=intck("week","1JAN00"D,"2JAN00"D); /*ONE DAY!!!*/
put WeeksBetween3= /*for a one day difference*/;

/*INTNX advances a date AND is tricky - read the documentation*/
date1B=intnx('week','01jan95'd,5,'beginning');
put date1B / date1B Weekdate17.;

date1M=intnx('week','01jan95'd,5,'middle');
put date1M / date1M Weekdate17.;

date1E=intnx('week','01jan95'd,5,'end');
put date1E / date1E Weekdate17.;

date1S=intnx('week','01jan95'd,5,'sameday');
put date1S / date1S Weekdate17.;

date2=intnx('month','01jan95'd,5,'middle');
put date2 / date2 date7.;

date3=intnx('month','01jan95'd,5,'end');
put date3 / date3 date7.;

date4=intnx('month','01jan95'd,5,'sameday');
put date4 / date4 date7.;
run;

50
1
4���252
3
datejul(

1
332
1
1
dateJul(numericDate)
52
1
y���252
3
datepart(

1
332
1
51
/*DATE Function DATEPART Function DATETIME Function DAY Function INTCK Function
INTNX Function MDY Function TIME Function TIMEPART Function TODAY Function*/

data _null_;
TodayDate=date(); /*Reads system clock*/
TodayToday=today(); /*Reads system clock*/
ThisInstant=DateTime(); /*Reads system clock*/
put TodayDate= TodayToday= ThisInstant=;
break=repeat("*",40);
put break;

DayFromDateTime=DatePart(ThisInstant); /*argument must be DateTime - NOT DATE*/

/*intck counts "time periods" between dates
 AND is tricky - read the documentation nad Bruce Gleason's paper*/
DaysBetween1=intck("day","1JAN00"D,"12JAN00"D);
put DaysBetween1=;
DaysBetween2=intck("day","12JAN00"D,"1JAN00"D);
put DaysBetween2=;

WeeksBetween1=intck("week","1JAN00"D,"12JAN00"D);
put WeeksBetween1=;
WeeksBetween2=intck("week","12JAN00"D,"1JAN00"D);
put WeeksBetween2=;

WeeksBetween3=intck("week","1JAN00"D,"2JAN00"D); /*ONE DAY!!!*/
put WeeksBetween3= /*for a one day difference*/;

/*INTNX advances a date AND is tricky - read the documentation*/
date1B=intnx('week','01jan95'd,5,'beginning');
put date1B / date1B Weekdate17.;

date1M=intnx('week','01jan95'd,5,'middle');
put date1M / date1M Weekdate17.;

date1E=intnx('week','01jan95'd,5,'end');
put date1E / date1E Weekdate17.;

date1S=intnx('week','01jan95'd,5,'sameday');
put date1S / date1S Weekdate17.;

date2=intnx('month','01jan95'd,5,'middle');
put date2 / date2 date7.;

date3=intnx('month','01jan95'd,5,'end');
put date3 / date3 date7.;

date4=intnx('month','01jan95'd,5,'sameday');
put date4 / date4 date7.;
run;

53
1
y���252
3
datetime

1
332
1
51
/*DATE Function DATEPART Function DATETIME Function DAY Function INTCK Function
INTNX Function MDY Function TIME Function TIMEPART Function TODAY Function*/

data _null_;
TodayDate=date(); /*Reads system clock*/
TodayToday=today(); /*Reads system clock*/
ThisInstant=DateTime(); /*Reads system clock*/
put TodayDate= TodayToday= ThisInstant=;
break=repeat("*",40);
put break;

DayFromDateTime=DatePart(ThisInstant); /*argument must be DateTime - NOT DATE*/

/*intck counts "time periods" between dates
 AND is tricky - read the documentation nad Bruce Gleason's paper*/
DaysBetween1=intck("day","1JAN00"D,"12JAN00"D);
put DaysBetween1=;
DaysBetween2=intck("day","12JAN00"D,"1JAN00"D);
put DaysBetween2=;

WeeksBetween1=intck("week","1JAN00"D,"12JAN00"D);
put WeeksBetween1=;
WeeksBetween2=intck("week","12JAN00"D,"1JAN00"D);
put WeeksBetween2=;

WeeksBetween3=intck("week","1JAN00"D,"2JAN00"D); /*ONE DAY!!!*/
put WeeksBetween3= /*for a one day difference*/;

/*INTNX advances a date AND is tricky - read the documentation*/
date1B=intnx('week','01jan95'd,5,'beginning');
put date1B / date1B Weekdate17.;

date1M=intnx('week','01jan95'd,5,'middle');
put date1M / date1M Weekdate17.;

date1E=intnx('week','01jan95'd,5,'end');
put date1E / date1E Weekdate17.;

date1S=intnx('week','01jan95'd,5,'sameday');
put date1S / date1S Weekdate17.;

date2=intnx('month','01jan95'd,5,'middle');
put date2 / date2 date7.;

date3=intnx('month','01jan95'd,5,'end');
put date3 / date3 date7.;

date4=intnx('month','01jan95'd,5,'sameday');
put date4 / date4 date7.;
run;

146
1
y���252
3
datetime(

1
332
1
51
/*DATE Function DATEPART Function DATETIME Function DAY Function INTCK Function
INTNX Function MDY Function TIME Function TIMEPART Function TODAY Function*/

data _null_;
TodayDate=date(); /*Reads system clock*/
TodayToday=today(); /*Reads system clock*/
ThisInstant=DateTime(); /*Reads system clock*/
put TodayDate= TodayToday= ThisInstant=;
break=repeat("*",40);
put break;

DayFromDateTime=DatePart(ThisInstant); /*argument must be DateTime - NOT DATE*/

/*intck counts "time periods" between dates
 AND is tricky - read the documentation nad Bruce Gleason's paper*/
DaysBetween1=intck("day","1JAN00"D,"12JAN00"D);
put DaysBetween1=;
DaysBetween2=intck("day","12JAN00"D,"1JAN00"D);
put DaysBetween2=;

WeeksBetween1=intck("week","1JAN00"D,"12JAN00"D);
put WeeksBetween1=;
WeeksBetween2=intck("week","12JAN00"D,"1JAN00"D);
put WeeksBetween2=;

WeeksBetween3=intck("week","1JAN00"D,"2JAN00"D); /*ONE DAY!!!*/
put WeeksBetween3= /*for a one day difference*/;

/*INTNX advances a date AND is tricky - read the documentation*/
date1B=intnx('week','01jan95'd,5,'beginning');
put date1B / date1B Weekdate17.;

date1M=intnx('week','01jan95'd,5,'middle');
put date1M / date1M Weekdate17.;

date1E=intnx('week','01jan95'd,5,'end');
put date1E / date1E Weekdate17.;

date1S=intnx('week','01jan95'd,5,'sameday');
put date1S / date1S Weekdate17.;

date2=intnx('month','01jan95'd,5,'middle');
put date2 / date2 date7.;

date3=intnx('month','01jan95'd,5,'end');
put date3 / date3 date7.;

date4=intnx('month','01jan95'd,5,'sameday');
put date4 / date4 date7.;
run;

54
1
t���252
3
day(

1
332
1
51
/*DATE Function DATEPART Function DATETIME Function DAY Function INTCK Function
INTNX Function MDY Function TIME Function TIMEPART Function TODAY Function*/

data _null_;
TodayDate=date(); /*Reads system clock*/
TodayToday=today(); /*Reads system clock*/
ThisInstant=DateTime(); /*Reads system clock*/
put TodayDate= TodayToday= ThisInstant=;
break=repeat("*",40);
put break;

DayFromDateTime=DatePart(ThisInstant); /*argument must be DateTime - NOT DATE*/

/*intck counts "time periods" between dates
 AND is tricky - read the documentation nad Bruce Gleason's paper*/
DaysBetween1=intck("day","1JAN00"D,"12JAN00"D);
put DaysBetween1=;
DaysBetween2=intck("day","12JAN00"D,"1JAN00"D);
put DaysBetween2=;

WeeksBetween1=intck("week","1JAN00"D,"12JAN00"D);
put WeeksBetween1=;
WeeksBetween2=intck("week","12JAN00"D,"1JAN00"D);
put WeeksBetween2=;

WeeksBetween3=intck("week","1JAN00"D,"2JAN00"D); /*ONE DAY!!!*/
put WeeksBetween3= /*for a one day difference*/;

/*INTNX advances a date AND is tricky - read the documentation*/
date1B=intnx('week','01jan95'd,5,'beginning');
put date1B / date1B Weekdate17.;

date1M=intnx('week','01jan95'd,5,'middle');
put date1M / date1M Weekdate17.;

date1E=intnx('week','01jan95'd,5,'end');
put date1E / date1E Weekdate17.;

date1S=intnx('week','01jan95'd,5,'sameday');
put date1S / date1S Weekdate17.;

date2=intnx('month','01jan95'd,5,'middle');
put date2 / date2 date7.;

date3=intnx('month','01jan95'd,5,'end');
put date3 / date3 date7.;

date4=intnx('month','01jan95'd,5,'sameday');
put date4 / date4 date7.;
run;

58
1
/���252
3
dequote(

1
332
1
1
dequote(string)
63
1
š���252
3
deviance(

1
332
1
1
deviance('Bernoulli|binomial|gamma|iGauss|Wald|normal|Gaussian|Poisson' , numericVariable , shapeParameters , epsilon)
219
1
[���252
3
dhms(

1
332
1
1
dhms(sasDate , numericHour , numericMinute , numericSecond)
120
1
0���252
3
digamma(

1
332
1
1
digamma(number)
220
1
Ø
��252
3
dim(

1
332
1
93
/*array Lbound Hbound Dim _temporary_*/
/* this example is weak on multi-dimensional arrays -
DIM always returns a total count of the number of elements in an array dimension.
HBOUND returns the literal value of the upper bound of an array dimension.
The LBOUND function returns the lower bound of a one-dimensional array
 or the lower bound of a specified dimension of a multidimensional array.
temporaty arrays are faster than "regular" arrays*/

data ClassCount;
retain age1-age20 /*temp arrays are automatically retianed*/;
set sashelp.class end=EOF;
array BigAgCt(0:25) _temporary_;
array SmlAgCt(20) age1-age20;

/*Initialize*/
if _n_=1 then
 Do;
 Do S=Lbound(SmlAgCt) to Hbound(SmlAgCt);
 SmlAgCt(S)=0;
	 put "initializing" S=;
 end;
 Do B=Lbound(BigAgCt) to Hbound(BigAgCt);
 BigAgCt(B)=0;
 End;
 End;

 /*Count students in ages*/
 SmlAgCt(age)=SmlAgCt(age)+1 ;
 put "Loading " age= SmlAgCt(age)= ;
/* Count students in ages*/
 BigAgCt(age)=BigAgCt(age)+1 ;

if EOF=1 then
 do loopS= Lbound(SmlAgCt) to Hbound(SmlAgCt) ;
 put "Printing values from the small array: "
 LoopS= "and the value is " SmlAgCt(LoopS);
 end;
 do loopB= Lbound(BigAgCt) to Hbound(BigAgCt) ;
 put "Printing values from the UntRetained array: "
 LoopB= "and the value is " BigAgCt(LoopB);
 end;
 run;

/*Dim*/
/*In this example, DIM returns a value of 5. Therefore, SAS repeats the statements in the DO loop five times. */
data _null_;
 array big{5} weight sex height state city;
 do i=1 to dim(big);
 Put "the value is" Bif(i);
 end;
run;

/*Examples of arrays*/
 data text; /*Character arrays*/
 array names{*} $ n1-n10;
 array capitals{*} $ c1-c10;
 input names{*};
 do i=1 to 10;
 capitals{i}=upcase(names{i});
 end;
 datalines;
smithers michaels gonzalez hurth frank bleigh
rounder joseph peters sam
;

/*To create a temporary array, use the _TEMPORARY_ argument. The following example creates a temporary array named TEST: */
options nodate pageno=1 linesize=80 pagesize=60;

data score2(drop=i);
 /*array test{3} t1-t3 (90 80 70);*/ /*Perm array and assign initial values*/
 array test{3} _temporary_ (90 80 70); /*Temp array and assign initial values*/
 array score{3} s1-s3;
 input id score{*};
 do i=1 to 3;
 if score{i}>=test{i} then
 do;
 NewScore=score{i};
 output;
 end;
 end;
 datalines;
 1234 99 60 82
 5678 80 85 75
 ;

 proc print noobs data=score2;
 title 'Data Set SCORE2';
 run;

51
1
¥���252
3
dow_loop

1
332
1
226
/***
This shows a few ways to apportion volumes of product (here they are rx)
We have different numbers of reps calling on chains
We want to apportion the rx to the reps who called on that chain

CID= 1 ; Qtr=1; Rx=20;output;
CID= 1 ; Qtr=2; Rx=30;output;
CID= 1 ; Qtr=3; Rx=40;output;

CID rep
1 Amy
1 Bo
1 Cheng
**/

Data Accounts2Reps;
infile datalines firstobs=2 truncover;
input @1 CID 1. @5 RepName $char10.;
datalines;
1234567890123456789012345678901234567890
1 Amy
1 Bo
1 Cheng
2 AnLei
2 Betty
2 Cathy
2 Juan
3 Adam
3 Barb
3 Charlie
3 Debbie
3 Erle
;
run;

data Rx;
CID= 1 ; Qtr=1; Rx=20; Cust="Cust 1"; output;
CID= 1 ; Qtr=2; Rx=30; Cust="Cust 1"; output;
CID= 1 ; Qtr=3; Rx=40; Cust="Cust 1"; output;
CID= 1 ; Qtr=4; Rx=50; Cust="Cust 1"; output;
CID= 2 ; Qtr=1; Rx=10; Cust="Cust 2"; output;
CID= 2 ; Qtr=2; Rx=20; Cust="Cust 2"; output;
CID= 2 ; Qtr=3; Rx=30; Cust="Cust 2"; output;
CID= 2 ; Qtr=4; Rx=40; Cust="Cust 2"; output;
CID= 3 ; Qtr=1; Rx=20; Cust="Cust 3"; output;
CID= 3 ; Qtr=2; Rx=15; Cust="Cust 3"; output;
CID= 3 ; Qtr=3; Rx=10; Cust="Cust 3"; output;
CID= 3 ; Qtr=4; Rx=5; Cust="Cust 3"; output;
run;

/***
Section __: DOW LOOP
Apportioning in Several Steps
A way to do a Cartesian product in a data step is shown below:
**/
/*get number of chains*/
proc SQL;
 Create table NmbrOfreps as
 select Cid , count(*) as NmbrOfreps
 from Accounts2Reps
 group by CID; /*CID=Customer ID*/
quit;

data Rx_n_N;
merge Rx NmbrOfReps;
by cid;
run;

data DOWapportioned /*/debug*/;
retain pointer;
 If _n_=1 then Pointer=1;
 set Rx_n_N (rename=(CID=RxCID)) End=EndOuter;
 by RxCid;
 do Count=Pointer by 1 Until ((RxCID NE CID) or Count=NobsInner);
 set accounts point=count end=EOFInner nobs=NobsInner;
 if RXCid = CID then
 do;
 ApportionedRx=Rx/NmbrOfreps;
 output;
 *put _all_;
 end;
 end; /*Count=Pointer by 1 Until (RxCID NE CID or eof2=1);*/
 if last.RxCid then pointer=Count;
 if EndOuter =1 then stop;
run;

proc sql;
select "the total in the raw data is: ", sum(rx) from rx
union
select "the total in the DOW final data is: ", sum(apportionedRX) from DOWApportioned;
quit;

proc sql;
select r.CID
 ,cust
 ,RawRx
 ,AppRx
 ,AppRx-RawRx as delta
 from (select CID, cust , sum(rx) as RawRx
 from Rx
 group by CID, cust) as R
 Inner join
 (select CID , sum(apportionedRX) as AppRx
 from DOWApportioned
 group by CID) as A
 on R.cid=A.cid
 order by delta desc;
quit;

options nocenter;
Proc print data=DOWapportioned ;

run;

/***
Section __: Apportioning using SQL
**/
proc SQL;
create table SQL_apportioned as
select Rx.cid
 , qtr
 , rx
 , NC.NmbrOfReps
 , RepName
 , rx /NmbrOfreps as apportioned
 from (select Cid , count(*) as NmbrOfreps
 from Accounts2Reps
 group by CID
) as NC
 ,
 Accounts2Reps as A
 , rx
 Where NC.cid=A.cid and NC.cid=rx.cid
 order by CId, Qtr, RepName;
quit;

proc sql;
select "the total in the raw data is: ", sum(rx) from rx
union
select "the total in the SQL final data is: ", sum(apportioned) from SQL_apportioned;
quit;

options ls=120;
proc sql;
select r.CID
 ,RawRx
 ,AppRx
	 ,Qtr
 ,rx
	 ,apportioned
	 ,NmbrOfreps
	 ,RepName

 ,AppRx-RawRx as delta
			 ,case
			 when calculated delta GT 0 then "<-------"
			 else " "
 end as flag
 from (select CID , sum(rx) as RawRx
 from Rx
 group by CID) as R
 Inner join
 (select CID ,RepName ,rx, qtr, NmbrOfreps, apportioned, sum(apportioned) as AppRx
 from SQL_Apportioned
 group by CID) as A
 on R.cid=A.cid
 order by CID ,qtr, RepName, delta desc;
quit;

/***
Section __: Using several Different procs and steps
**/
proc summary data=Accounts2Reps nway missing;
class CID;
output out=NmbrOfRepsInAnAccount(drop= _type_ _freq_) n(CID)=NmbrOfReps;
quit;

data Rx_N_N;
merge rx NmbrOfRepsInAnAccount;
by cid;
run;

/*use SQL for the cartesian merge*/
proc sql;
create table RXApportioned as
 select RX.CID
	 ,cust
 ,qtr
 ,rx
 ,NmbrOfReps
 ,rx/NmbrOfReps as ApportionedRX
 ,RepName
 from Rx_N_N as Rx
 left join
 Accounts2Reps as A
 on rx.cid=a.cid
 order by cid, qtr,RepName ;
quit;

proc sql;
select "the total in the raw data is: ", sum(rx) from rx
union
select "the total in the multi step final data is: ", sum(apportionedRX)
 from RXApportioned;
quit;

proc sql;
select r.CID
 ,cust
	 ,r.qtr
 ,RawRx
 ,apportionedRX
 ,AppRx-RawRx as delta
 from (select CID, qtr, cust , sum(rx) as RawRx
 from Rx
 group by CID, qtr) as R
 Inner join
 (select CID , qtr, apportionedRX, sum(apportionedRX) as AppRx
 from RXApportioned
 group by CID, qtr) as A
 on R.cid=A.cid and R.qtr=A.qtr
 order by cust, qtr ;
quit;
171
1
(���252
3
erf(

1
332
1
1
erF(number)
221
1
*���252
3
erfc(

1
332
1
1
erFC(number)
222
1
����252
3
eurocurr(

1
332
1
1
euroCurr(amount , fromCode , toCode) /* Codes: AustrianSchilling=ATS BelgianFranc=BEF BritishPoundSterling=GBP CzechKoruna=CZK DanishKrone=DKK DeutscheMark=DEM DutchGuilder=NLG Euro=EUR FinnishMarkka=FIM FrenchFranc=FRF GreekDrachma=GRD HungarianForint=HUF IrishPound=IEP ItalianLira=ITL LuxembourgFranc=LUF NorwegianKrone=NOK PolishZloty=PLZ PortugueseEscudo=PTE RomanianLeu=ROL RussianRuble=RUR SlovenianTolar=SIT SpanishPeseta=ESP SwedishKrona=SEK SwissFranc=CHF TurkishLira=TRL YugoslavianDinar=YUD */
47
1
(���252
3
exp(

1
332
1
1
exp(number)
223
1
4���252
3
fact(

1
332
1
1
fact(numberOfElements)
224
1
U���252
3
find(

1
332
1
142
/*FIND FINDC FINDW Count CountW CountC
 (These might eb better than Verify , index , indexc and indexw)
The find Function returns the character position
 of a specific substring of characters within a character string.
The FINDC function returns the character position
 of the first encountered character from a group of individual characters
The FindW Funcion returns the character position of a word in a string,

The FIND group of functions and the INDEX group of functions
 both search for substrings of characters in a character string.
 However, the INDEX functions do not have the modifiers nor the startpos arguments.

The FINDC function searches for individual characters in a character string,
 whereas the FIND function searches for substrings of characters in a character string.

The FINDC function and the INDEXC function both search for individual characters in a character string.
 However, the INDEXC function does not have the modifier nor the startpos arguments.

The FINDC function searches for individual characters in a character string,
 whereas the VERIFY function searches for the first character that is unique to an expression.
 The VERIFY function does not have the modifier nor the startpos arguments.

Count Counts the number of times that a specified substring appears within a character string.
CountW Counts the number of words in a character string.
CountC Counts the number of characters in a string that appear or do not appear in a list of characters.
*/

data _null_;
/*Find FIND function searches for substrings of characters in a character string*/
WhereIsShe=find('She sells seashells? Yes, she does.','she ');
put WhereIsShe;

variable1='She sells seashells? Yes, she does.';
variable2='she ';
variable3='i';
WhereIsShe_i=find(variable1,variable2,variable3);
put WhereIsShe_i;

expression1='She sells seashells? '||'Yes, she does.';
expression2=kscan('he or she',3)||' ';
expression3=trim('t ');
WhereIsShe_t=find(expression1,expression2,expression3);
put WhereIsShe_t;

xyz='She sells seashells? Yes, she does.';
startposvar=22;
WhereIsShe_22=find(xyz,'she',startposvar);

/*FindW Returns the character position of a word in a string, or returns the number of the word in a string. */
WhereIsShe_W1=findw('She sells sea shells? Yes, she does.','she');
 put WhereIsShe_W1=;
/*Only the second occurrence is found by FINDW because the search begins in position 25.
 The chars argument specifies a space as the delimiter. */
 result = findw('At least 2.5 meters of rain falls in a rain forest.',
 'rain', ' ', 25);
 put result=;

/*FindC Searches a string for any character in a list of characters. */

/*count*/
xyz='This is a thistle? Yes, this is a thistle.';
HowManyThis=count(xyz,'this');
put HowManyhis;

xyz='This is a thistle? Yes, this is a thistle.';
HowManyIs=count(xyz,'is');
put HowManyIs;

HowManyhis_i=count('This is a thistle? Yes, this is a thistle.'
 ,'this','i');
put HowManyhis_i;

variable1='This is a thistle? Yes, this is a thistle.';
variable2='is ';
variable3='i';
HowManyIs_i=count(variable1,variable2,variable3);
put HowManyIs_i;

expression1='This is a thistle? '||'Yes, this is a thistle.';
expression2=kscan('This is',2)||' ';
expression3=compress('i '||' t');
howmanyis_it=count(expression1,expression2,expression3);
put howmanyis_it;

put WhereIsShe_22;

xyz='She sells seashells? Yes, she does.';
startposexp=1-23;
whereisShe_ineg22=find(xyz,'She','i',startposexp);
put whereisShe_ineg22;

Run;

/*CountW*/
/*The following example shows how to use the COUNTW function with the M and P modifiers. */
options ls=64 pageno=1 nodate;
data test;
 length default blanks mp 8;
 input string $char60.;
 default = CountW(string);
 blanks = CountW(string, ' ');
 mp = CountW(string, 'mp');
 datalines;
The quick brown fox jumps over the lazy dog.
 Leading blanks
2+2=4
/unix/path/names/use/slashes
\Windows\Path\Names\Use\Backslashes
;
run;

proc print noobs data=test;
run;

/*CountC*/
/*The following example uses the COUNTC function with and without modifiers to count the number of characters in a string. */

data test;
 string = 'Baboons Eat Bananas ';
 a = countc(string, 'a');
 b = countc(string,'b');
 b_i = countc(string,'b','i');
 abc_i = countc(string,'abc','i');
 /* Scan string for characters that are not "a", "b", */
 /* and "c", ignore case, (and include blanks). */
 abc_iv = countc(string,'abc','iv');
 /* Scan string for characters that are not "a", "b", */
 /* and "c", ignore case, and trim trailing blanks. */
 abc_ivt = countc(string,'abc','ivt');
run;

options pageno=1 ls=80 nodate;
proc print data=test noobs;
run;

55
1
V���252
3
findc(

1
332
1
142
/*FIND FINDC FINDW Count CountW CountC
 (These might eb better than Verify , index , indexc and indexw)
The find Function returns the character position
 of a specific substring of characters within a character string.
The FINDC function returns the character position
 of the first encountered character from a group of individual characters
The FindW Funcion returns the character position of a word in a string,

The FIND group of functions and the INDEX group of functions
 both search for substrings of characters in a character string.
 However, the INDEX functions do not have the modifiers nor the startpos arguments.

The FINDC function searches for individual characters in a character string,
 whereas the FIND function searches for substrings of characters in a character string.

The FINDC function and the INDEXC function both search for individual characters in a character string.
 However, the INDEXC function does not have the modifier nor the startpos arguments.

The FINDC function searches for individual characters in a character string,
 whereas the VERIFY function searches for the first character that is unique to an expression.
 The VERIFY function does not have the modifier nor the startpos arguments.

Count Counts the number of times that a specified substring appears within a character string.
CountW Counts the number of words in a character string.
CountC Counts the number of characters in a string that appear or do not appear in a list of characters.
*/

data _null_;
/*Find FIND function searches for substrings of characters in a character string*/
WhereIsShe=find('She sells seashells? Yes, she does.','she ');
put WhereIsShe;

variable1='She sells seashells? Yes, she does.';
variable2='she ';
variable3='i';
WhereIsShe_i=find(variable1,variable2,variable3);
put WhereIsShe_i;

expression1='She sells seashells? '||'Yes, she does.';
expression2=kscan('he or she',3)||' ';
expression3=trim('t ');
WhereIsShe_t=find(expression1,expression2,expression3);
put WhereIsShe_t;

xyz='She sells seashells? Yes, she does.';
startposvar=22;
WhereIsShe_22=find(xyz,'she',startposvar);

/*FindW Returns the character position of a word in a string, or returns the number of the word in a string. */
WhereIsShe_W1=findw('She sells sea shells? Yes, she does.','she');
 put WhereIsShe_W1=;
/*Only the second occurrence is found by FINDW because the search begins in position 25.
 The chars argument specifies a space as the delimiter. */
 result = findw('At least 2.5 meters of rain falls in a rain forest.',
 'rain', ' ', 25);
 put result=;

/*FindC Searches a string for any character in a list of characters. */

/*count*/
xyz='This is a thistle? Yes, this is a thistle.';
HowManyThis=count(xyz,'this');
put HowManyhis;

xyz='This is a thistle? Yes, this is a thistle.';
HowManyIs=count(xyz,'is');
put HowManyIs;

HowManyhis_i=count('This is a thistle? Yes, this is a thistle.'
 ,'this','i');
put HowManyhis_i;

variable1='This is a thistle? Yes, this is a thistle.';
variable2='is ';
variable3='i';
HowManyIs_i=count(variable1,variable2,variable3);
put HowManyIs_i;

expression1='This is a thistle? '||'Yes, this is a thistle.';
expression2=kscan('This is',2)||' ';
expression3=compress('i '||' t');
howmanyis_it=count(expression1,expression2,expression3);
put howmanyis_it;

put WhereIsShe_22;

xyz='She sells seashells? Yes, she does.';
startposexp=1-23;
whereisShe_ineg22=find(xyz,'She','i',startposexp);
put whereisShe_ineg22;

Run;

/*CountW*/
/*The following example shows how to use the COUNTW function with the M and P modifiers. */
options ls=64 pageno=1 nodate;
data test;
 length default blanks mp 8;
 input string $char60.;
 default = CountW(string);
 blanks = CountW(string, ' ');
 mp = CountW(string, 'mp');
 datalines;
The quick brown fox jumps over the lazy dog.
 Leading blanks
2+2=4
/unix/path/names/use/slashes
\Windows\Path\Names\Use\Backslashes
;
run;

proc print noobs data=test;
run;

/*CountC*/
/*The following example uses the COUNTC function with and without modifiers to count the number of characters in a string. */

data test;
 string = 'Baboons Eat Bananas ';
 a = countc(string, 'a');
 b = countc(string,'b');
 b_i = countc(string,'b','i');
 abc_i = countc(string,'abc','i');
 /* Scan string for characters that are not "a", "b", */
 /* and "c", ignore case, (and include blanks). */
 abc_iv = countc(string,'abc','iv');
 /* Scan string for characters that are not "a", "b", */
 /* and "c", ignore case, and trim trailing blanks. */
 abc_ivt = countc(string,'abc','ivt');
run;

options pageno=1 ls=80 nodate;
proc print data=test noobs;
run;

64
1
œ���252
3
findn(

1
332
1
34
/*FIND FINDC FINDW
The find Function returns the character position
 of a specific substring of characters within a character string.
The FINDC function returns the character position
 of the first encountered character from a group of individual characters
The FindW Funcion returns the character position of a word in a string,

The FIND group of functions and the INDEX group of functions
 both search for substrings of characters in a character string.
 However, the INDEX functions do not have the modifiers nor the startpos arguments.
*/

/*Missing*/
data _null_;
NumAndMissing =.;
CharAndMissing ="";
CharAndOneBlank=" ";
NumAndValued =4;
CharAndValued ="SAS Stat";

NumAndMissingYN =missing(NumAndMissing);
 put NumAndMissing= NumAndMissingYN=;
CharAndMissingYN =missing(CharAndMissing);
 put CharAndMissing= CharAndMissingYN=;
CharAndOneBlankYN =missing(CharAndOneBlank);
 put CharAndOneBlank= CharAndOneBlankYN=;
NumAndValuedYN =missing(NumAndValued);
 put NumAndValued= NumAndValuedYN=;
CharAndValuedYN =missing(CharAndValued);
 put CharAndValued= CharAndValuedYN=;
;
run;

292
1
W���252
3
findw(

1
332
1
142
/*FIND FINDC FINDW Count CountW CountC
 (These might eb better than Verify , index , indexc and indexw)
The find Function returns the character position
 of a specific substring of characters within a character string.
The FINDC function returns the character position
 of the first encountered character from a group of individual characters
The FindW Funcion returns the character position of a word in a string,

The FIND group of functions and the INDEX group of functions
 both search for substrings of characters in a character string.
 However, the INDEX functions do not have the modifiers nor the startpos arguments.

The FINDC function searches for individual characters in a character string,
 whereas the FIND function searches for substrings of characters in a character string.

The FINDC function and the INDEXC function both search for individual characters in a character string.
 However, the INDEXC function does not have the modifier nor the startpos arguments.

The FINDC function searches for individual characters in a character string,
 whereas the VERIFY function searches for the first character that is unique to an expression.
 The VERIFY function does not have the modifier nor the startpos arguments.

Count Counts the number of times that a specified substring appears within a character string.
CountW Counts the number of words in a character string.
CountC Counts the number of characters in a string that appear or do not appear in a list of characters.
*/

data _null_;
/*Find FIND function searches for substrings of characters in a character string*/
WhereIsShe=find('She sells seashells? Yes, she does.','she ');
put WhereIsShe;

variable1='She sells seashells? Yes, she does.';
variable2='she ';
variable3='i';
WhereIsShe_i=find(variable1,variable2,variable3);
put WhereIsShe_i;

expression1='She sells seashells? '||'Yes, she does.';
expression2=kscan('he or she',3)||' ';
expression3=trim('t ');
WhereIsShe_t=find(expression1,expression2,expression3);
put WhereIsShe_t;

xyz='She sells seashells? Yes, she does.';
startposvar=22;
WhereIsShe_22=find(xyz,'she',startposvar);

/*FindW Returns the character position of a word in a string, or returns the number of the word in a string. */
WhereIsShe_W1=findw('She sells sea shells? Yes, she does.','she');
 put WhereIsShe_W1=;
/*Only the second occurrence is found by FINDW because the search begins in position 25.
 The chars argument specifies a space as the delimiter. */
 result = findw('At least 2.5 meters of rain falls in a rain forest.',
 'rain', ' ', 25);
 put result=;

/*FindC Searches a string for any character in a list of characters. */

/*count*/
xyz='This is a thistle? Yes, this is a thistle.';
HowManyThis=count(xyz,'this');
put HowManyhis;

xyz='This is a thistle? Yes, this is a thistle.';
HowManyIs=count(xyz,'is');
put HowManyIs;

HowManyhis_i=count('This is a thistle? Yes, this is a thistle.'
 ,'this','i');
put HowManyhis_i;

variable1='This is a thistle? Yes, this is a thistle.';
variable2='is ';
variable3='i';
HowManyIs_i=count(variable1,variable2,variable3);
put HowManyIs_i;

expression1='This is a thistle? '||'Yes, this is a thistle.';
expression2=kscan('This is',2)||' ';
expression3=compress('i '||' t');
howmanyis_it=count(expression1,expression2,expression3);
put howmanyis_it;

put WhereIsShe_22;

xyz='She sells seashells? Yes, she does.';
startposexp=1-23;
whereisShe_ineg22=find(xyz,'She','i',startposexp);
put whereisShe_ineg22;

Run;

/*CountW*/
/*The following example shows how to use the COUNTW function with the M and P modifiers. */
options ls=64 pageno=1 nodate;
data test;
 length default blanks mp 8;
 input string $char60.;
 default = CountW(string);
 blanks = CountW(string, ' ');
 mp = CountW(string, 'mp');
 datalines;
The quick brown fox jumps over the lazy dog.
 Leading blanks
2+2=4
/unix/path/names/use/slashes
\Windows\Path\Names\Use\Backslashes
;
run;

proc print noobs data=test;
run;

/*CountC*/
/*The following example uses the COUNTC function with and without modifiers to count the number of characters in a string. */

data test;
 string = 'Baboons Eat Bananas ';
 a = countc(string, 'a');
 b = countc(string,'b');
 b_i = countc(string,'b','i');
 abc_i = countc(string,'abc','i');
 /* Scan string for characters that are not "a", "b", */
 /* and "c", ignore case, (and include blanks). */
 abc_iv = countc(string,'abc','iv');
 /* Scan string for characters that are not "a", "b", */
 /* and "c", ignore case, and trim trailing blanks. */
 abc_ivt = countc(string,'abc','ivt');
run;

options pageno=1 ls=80 nodate;
proc print data=test noobs;
run;

311
1
‚���252
3
finv(

1
332
1
1
fInv(numericProbability , numeratorDegreesOfFreedom , denominatorDegreesOfFreedom , nonCentrality)
261
1
7���252
3
fipname(

1
332
1
1
fipName(fipsStateCode)
297
1
9���252
3
fipnamel(

1
332
1
1
fipNameL(fipsStateCode)
298
1
9���252
3
fipstate(

1
332
1
1
fipState(fipsStateCode)
299
1
,���252
3
floor(

1
332
1
60
/*Min Function*/
/*
MEAN Function MEDIAN Function CALL SLEEP Routine SLEEP Function
CEIL Function FLOOR Function INT Function ROUND Function
RANGE Function
*/
data StatExamples;
x=10;
y=200;
i=123;
j=555;
z=1;
m=.;
 put z= x= i= y= j= m=;
MAxExample1=Max(x,y,i,j,z);
 put MAxExample1= ;
MAxExample2=Max(.,x,y,i,j,z);
 put MAxExample2= ;
MinExample1=Min(x,y,i,j,z);
 put MinExample1= ;
MinExample2=Min(.,x,y,i,j,z);
 put MinExample2= ;

MeanExample1=Mean(x,y,i,j,z);
 put MeanExample1= ;
MeanExample2=Mean(x,y, . ,i,j,z);
 put MeanExample2= ;

MedianExample1=Median(x,y,i,j,z);
 put MedianExample1= ;
MedianExample2=Median(x,y, . , i,j,z);
 put MedianExample2= ;

NExample=N(x,y,i,.,.,j,z);
 put "For the function NExample=N(x,y,i,.,.,j,z); " NExample= ;
NMissExample=NMiss(x,y,i,.,.,j,z); /*Missing values*/
 put "For the function NMissExample=NMiss(x,y,i,.,.,j,z); " NMissExample= ;
SumExample=Sum(x,y,i,.,j,z,m); /*Missing values*/
 put SumExample= ;

CeilExample =ceil(5.4637);
 put "CeilExample =ceil(5.4637) " CeilExample= ;
FloorExample =Floor(5.4637);
 put "FloorExample =Floor(5.4637) " FloorExample= ;
IntExample =Int(5.4637);
 put "IntExample =Int(5.4637);" IntExample= ;

RoundExample1=Round(5.4637,0.1);
 put "RoundExample1=Round(5.4637,0.1)" RoundExample1= ;
RoundExample2=Round(5.4637,0.01);
 put "RoundExample2=Round(5.4537,0.01);" RoundExample2= ;
RoundExample3=Round(5.4637,0.001);
 put "RoundExample3=Round(5.4637,0.001);" RoundExample3=;

RangeExample1=range(x,y,i,j,z);
 put "RangeExample1=range(x,y,i,j,z);" RangeExample1=;
RangeExample2=range(.,.,x,y,i,j,z); /*Missing values*/
 put "RangeExample2=range(.,.,x,y,i,j,z);" RangeExample2=;
;
run;
317
1
.���252
3
floorz(

1
332
1
1
floorZ(number)
318
1
����252
3
fnonct(

1
332
1
1
fNonct(numericVariable , numeratorDegreesOfFreedom , denominatorDegreesOfFreedom , probability)
225
1
*���252
3
fuzz(

1
332
1
1
fuzz(number)
319
1
D���252
3
gaminv(

1
332
1
1
gamInv(numericProbability , shape)
262
1
,���252
3
gamma(

1
332
1
1
gamma(number)
226
1
D���252
3
geomean(

1
332
1
1
geoMean(number1< , number2<...>>)
167
1
F���252
3
geomeanz(

1
332
1
1
geoMeanZ(number1< , number2<...>>)
168
1
D���252
3
harmean(

1
332
1
1
harMean(number1< , number2<...>>)
169
1
F���252
3
harmeanz(

1
332
1
1
harMeanZ(number1< , number2<...>>)
170
1
i���252
3
Hash_3Way_merge

1
332
1
58
/**Hashing - merege 3 files without sorting************************/
/*Judy Loren NESUG 2008 Programming beyond the basics*/
/*How Do I love Hash Tables? Let Me Count The Ways page 3*/
Proc SQL;/*BaseTable- we want to merge data to this*/
create table BaseTable as
select name, sex
from sashelp.class
order by ranuni(5);

proc SQL;/*Merge this to base table-not all obs will have a match"*/
create table LookupAge as
select name , age from sashelp.class
having ranuni(3) Le .7
order by sex;
run;

Proc SQL;
create table summarized as
select sex, avg(height) as AvgHeight
from sashelp.class
group by sex;
run;

data Hash3WayMerge;
	/*we are merging on different levels of grouping*/
	/*put all variables on the PDV*/
	If 0 then set work.LookupAge;
	if 0 then set Summarized;

	/*create and load hash table for LookupAge*/
	declare hash
	 ages(dataset: "LookupAge", hashexp: 4);/*2^4 cells - playing around*/
	 ages.definekey("name"); /*we will "merge" on name*/
	 ages.definedata("age"); /*define the data in the Hash table & PDV*/
	 ages.DefineDone();

	 /*create and load hash table for average height by sex*/
	declare hash
		AvgHgt (dataset: "summarized", hashexp:1);/*- playing around*/
	 AvgHgt.definekey("Sex"); /*we will "merge" on sex*/
	 AvgHgt.definedata("AvgHeight"); /*define the data in the Hash table & PDV*/
	 AvgHgt.DefineDone();

	do until (EOF); /*read baseline inside a loop*/
		/*initialize vars brought in- The PDV is NOT cleared*/
		avgHeight=.; age=.;
		Set BaseTable end=EOF;
		rc=ages.find();
		if RC NE 0 then put "Could not find an age in the hash table";
		rc=AvgHgt.find();
		if RC NE 0 then put "Could not find avg height in the hash table";
	 output;
	end;
	stop; /*this will only make one pass through the data step*/
run;
proc print data=Hash3WayMerge;
run;
364
1
¢���252
3
Hashing_LeftJoinLookup

1
332
1
43
/*Using hashing to create an output like a left join*/
/*Courtesy of Paul Dorfmann*/
/*http://www2.sas.com/proceedings/sugi31/241-31.pdf*/
/*http://www.nesug.org/Proceedings/nesug05/cc/ccx3.pdf*/

data 	Small(keep=name age obsno)/*Boss says get info on these people*/
		Large(drop=age obsNo);
	set sashelp.class;
	obsNo=_n_;
	if mod(_n_,3)=0 then output small;
	if _n_ LE 8 or _n_ GT 14 then output Large;	
run;
proc print data=small;run;
proc print data=large;run;

Data LeftJoin;/*PUT LARGE FILE IN HASH OBJECT*/
if 0 then set large; /**/
/*load the small file into the hash object 2^4 buckets*/
if _n_=1 then
do; /*load the hash table once*/
 declare hash HO_Large(dataset:"work.large"
				,hashexp: 4
);
	rc= HO_Large.defineKey("name");
	rc= HO_Large.defineData("name","Sex", "Height", "Weight");
	rc= HO_Large.defineDone();
 end;

do until (eof);
 set Small end=eof;
 rc=HO_Large.find();
 if RC=0 then MatchFlag="Match ";
 Else MatchFlag="No Match";
 output;
end;
stop; /*We only need one pass through the data step*/
run;

proc print data=leftJoin;
run;

392
1
ø���252
3
HashingInnerJoinLookup

1
332
1
38
/**Hashing as an inner join**/
/*Courtesy of Paul Dorfmann*/
/*http://www2.sas.com/proceedings/sugi31/241-31.pdf*/
/*http://www.nesug.org/Proceedings/nesug05/cc/ccx3.pdf*/
data 	Small(keep=name age obsno)
		Large(drop=age obsNo);
	set sashelp.class;
	obsNo=_n_;
	if mod(_n_,3)=0 then output small;
	if _n_ LE 8 or _n_ GT 14 then output Large;	
run;
proc print data=small;run;
proc print data=large;run;

/*Using hashing to create an output like an inner join*/
Data InnerJoin;
if 0 then set Small; /**/
/*load the small file into the hash object 2^4 buckets*/
if _n_=1 then
do; /*load the hash table once*/
	declare hash HO_Small(dataset:"work.small"
				,hashexp: 4
);
	rc= HO_Small.defineKey("name");
	rc= HO_Small.defineData("name","age", "ObsNo");
	rc= HO_Small.defineDone();
end;
do until (eof);
 set large end=eof;
 rc=HO_Small.find();
 if (rc=0) then output;
end;
run;

proc print data=innerJoin;
run;

387
1
/���252
3
HashLookup

1
332
1
61
/**
Section:HASHING 	http://www2.sas.com/proceedings/sugi30/236-30.pdf
			http://analytics.ncsu.edu/sesug/2006/SC19_06.PDF
			http://www.nesug.info/Proceedings/nesug06/dm/da07.pdf
			http://www.basug.org/downloads/2007q2/Guidelines.ppt#258,2,Join Techniques
			http://www.sas.com/offices/NA/canada/newsletter/insights/sep05/SAS9_Features_Function.pdf
			http://www.nesug.info/Proceedings/nesug05/cc/ccx3.pdf
***/
data GetInfo;
infile datalines;
input @1 name $char8. @10 Runner $char1.;
datalines;
Alfred Y
RUSS N
Janet N
Ed Y
Chris Y
Elmo Y
Jeffrey N
Mary Y
Wally N
;
run;

proc print data=sashelp.class;
run;

data DataLookedUp;
if _n_=0 then set GetINfo;
array Cbig(1) $ sex;
array Nbig(3) age height weight;

if _n_=1 then
	do;
		declare hash MyHashTable(dataset: "work.GetInfo", hashexp:4);
			rc=MyHashTable.DefineKey("name");
				if rc NE 0 then put "problem with keys";
				else put "keys OK";
			rc=MyHashTable.DefineData("name","Runner");	
				if rc NE 0 then put "problem with data";
				else put "data OK";
			rc=MyHashTable.definedone();
	end;

		set sashelp.class;
		rc=MyHashTable.find();
		*if (rc=0) then output;
		If rc NE 0 then
			do;
				 do i=1 to dim(Cbig);
					Cbig(i)="";
				 end;
				 do i=1 to dim(Nbig);
					Nbig(i)=.;
				end;
			end;
run;	

proc print data=DataLookedUp;
run;

365
1
Ú
��252
3
hbound(

1
332
1
93
/*array Lbound Hbound Dim _temporary_*/
/* this example is weak on multi-dimensional arrays -
DIM always returns a total count of the number of elements in an array dimension.
HBOUND returns the literal value of the upper bound of an array dimension.
The LBOUND function returns the lower bound of a one-dimensional array
 or the lower bound of a specified dimension of a multidimensional array.
temporaty arrays are faster than "regular" arrays*/

data ClassCount;
retain age1-age20 /*temp arrays are automatically retianed*/;
set sashelp.class end=EOF;
array BigAgCt(0:25) _temporary_;
array SmlAgCt(20) age1-age20;

/*Initialize*/
if _n_=1 then
 Do;
 Do S=Lbound(SmlAgCt) to Hbound(SmlAgCt);
 SmlAgCt(S)=0;
	 put "initializing" S=;
 end;
 Do B=Lbound(BigAgCt) to Hbound(BigAgCt);
 BigAgCt(B)=0;
 End;
 End;

 /*Count students in ages*/
 SmlAgCt(age)=SmlAgCt(age)+1 ;
 put "Loading " age= SmlAgCt(age)= ;
/* Count students in ages*/
 BigAgCt(age)=BigAgCt(age)+1 ;

if EOF=1 then
 do loopS= Lbound(SmlAgCt) to Hbound(SmlAgCt) ;
 put "Printing values from the small array: "
 LoopS= "and the value is " SmlAgCt(LoopS);
 end;
 do loopB= Lbound(BigAgCt) to Hbound(BigAgCt) ;
 put "Printing values from the UntRetained array: "
 LoopB= "and the value is " BigAgCt(LoopB);
 end;
 run;

/*Dim*/
/*In this example, DIM returns a value of 5. Therefore, SAS repeats the statements in the DO loop five times. */
data _null_;
 array big{5} weight sex height state city;
 do i=1 to dim(big);
 Put "the value is" Bif(i);
 end;
run;

/*Examples of arrays*/
 data text; /*Character arrays*/
 array names{*} $ n1-n10;
 array capitals{*} $ c1-c10;
 input names{*};
 do i=1 to 10;
 capitals{i}=upcase(names{i});
 end;
 datalines;
smithers michaels gonzalez hurth frank bleigh
rounder joseph peters sam
;

/*To create a temporary array, use the _TEMPORARY_ argument. The following example creates a temporary array named TEST: */
options nodate pageno=1 linesize=80 pagesize=60;

data score2(drop=i);
 /*array test{3} t1-t3 (90 80 70);*/ /*Perm array and assign initial values*/
 array test{3} _temporary_ (90 80 70); /*Temp array and assign initial values*/
 array score{3} s1-s3;
 input id score{*};
 do i=1 to 3;
 if score{i}>=test{i} then
 do;
 NewScore=score{i};
 output;
 end;
 end;
 datalines;
 1234 99 60 82
 5678 80 85 75
 ;

 proc print noobs data=score2;
 title 'Data Set SCORE2';
 run;

2
1
D���252
3
header

1
332
1
15
/**
* Program name :
* Project :
* Written by :
* Date of creation :
* Description :
* Macros called :
* Input file :
* Output file :
* Revision History :
* Date Author Description of the change
*
**/
Footnote "Prog Name: %sysget(SAS_EXECFILENAME) **By: &SYSUSERID ** Run on: %sysfunc(datetime(),datetime16.)";

363
1
O���252
3
hms(

1
332
1
1
hms(numericHour , numericMinute , numericSecond)
121
1
7���252
3
hour(

1
332
1
1
hour(sasDateTime|sasTime)
122
1
����252
3
ifc(

1
332
1
1
ifC(logicalExpression , valueReturnedWhenTrue, valueReturnedWhenFalse< , valueReturnedWhenMissing>)
65
1
����252
3
ifn(

1
332
1
1
ifN(logicalExpression , valueReturnedWhenTrue, valueReturnedWhenFalse< , valueReturnedWhenMissing>)
66
1
�
��252
3
index(

1
332
1
91
/*
Might be better to use one of the find functions (find findc findw)
 find functions seem to be more powerful

The INDEX function searches source, from left to right, for the first occurrence OF THE STRING specified in excerpt,
 and returns the position in source of the string's first character.
 If the string is not found in source, INDEX returns a value of 0.
 If there are multiple occurrences of the string, INDEX returns only the position of the first occurrence.
The INDEXC function searches source, from left to right, for the first occurrence of ANY character present
 in the excerpts and returns the position in source of that character.
 If none of the characters in excerpt-1 through excerpt-n in source are found, INDEXC returns a value of 0.
The INDEXW function searches for sTRINGS THAT ARE WORDS,
	whereas the INDEX function searches for patterns as separate words or as parts of other words.
	INDEXC searches for any characters that are present in the excerpts.
*/

data _null_;
a='ABC.DEF (X=Y)';
b='X=Y';
x_Index=index(a,b);
	put "x_Index=index(a,b);";
	put a= b= x_index=;
	put ;

a='ABC.DEP (X2=Y1)';
x_Indexc1=indexc(a,'0123',';()=.');
	put "x_Indexc1=indexc(a,'0123',';()=.');";
	put a= x_Indexc1;
	put ;

b='have a good day';
x_Indexc2=indexc(b,'pleasant','very');
	put "x_Indexc2=indexc(b,'pleasant','very');";
	put b= x_Indexc2=;
	put;

s='asdf adog dog';
p='dog ';
x_IndexW1=indexw(s,p);
	put "x_IndexW1=indexw(s,p);";
	put s= a= x_IndexW1=;
	put ;

s='abcdef x=y';
p='def';
x_IndexW2=indexw(s,p);
	put "x_IndexW2=indexw(s,p);";
	put s= p= x_IndexW2=;
	put ;

x="abc,def@ xyz";
abc_IndexW3=indexw(x, " abc ", "@");
	put /* "bc_IndexW3=indexw(x, " abc ", "@%%);*/;
	put X= abc_IndexW3=;
	put ;

x="abc,def@ xyz";
CommaIndexW=indexw(x, ",", "@");
	put 'CommaIndexW=indexw(x, ",", "@");';
	put X= CommaIndexW=;
	put ;

x="abc,def% xyz";
DefIndexW=indexw(x, "def", "%");
	put 'DefIndexW=indexw(x, "def", "%");';
	put x= DefIndexW=;
	put ;

x="abc,def@ xyz";
AtIndexW=indexw(x, "@", "@");
	put 'AtIndexW=indexw(x, "@", "@");';
	put x= AtIndexW=;
	put ;

x="abc,def@ xyz";
xyzIndexW=indexw(x, " xyz", "@");
	put 'xyzIndexW=indexw(x, " xyz", "@");';
	put X= xyzIndexW=;
	put "";
	
CIndexWTrim=indexw(trimn(' '), ' ');
	put "CIndexWTrim=indexw(trimn(' '), ' ');";
	put CIndexWTrim=;
	put ;

gIndexW=indexw(' x y ', trimn(' '));
	put "gIndexW=indexw(' x y ', trimn(' '));";
 	put gIndexW=;
	put;
run;

67
1
�
��252
3
indexc(

1
332
1
91
/*
Might be better to use one of the find functions (find findc findw)
 find functions seem to be more powerful

The INDEX function searches source, from left to right, for the first occurrence OF THE STRING specified in excerpt,
 and returns the position in source of the string's first character.
 If the string is not found in source, INDEX returns a value of 0.
 If there are multiple occurrences of the string, INDEX returns only the position of the first occurrence.
The INDEXC function searches source, from left to right, for the first occurrence of ANY character present
 in the excerpts and returns the position in source of that character.
 If none of the characters in excerpt-1 through excerpt-n in source are found, INDEXC returns a value of 0.
The INDEXW function searches for sTRINGS THAT ARE WORDS,
	whereas the INDEX function searches for patterns as separate words or as parts of other words.
	INDEXC searches for any characters that are present in the excerpts.
*/

data _null_;
a='ABC.DEF (X=Y)';
b='X=Y';
x_Index=index(a,b);
	put "x_Index=index(a,b);";
	put a= b= x_index=;
	put ;

a='ABC.DEP (X2=Y1)';
x_Indexc1=indexc(a,'0123',';()=.');
	put "x_Indexc1=indexc(a,'0123',';()=.');";
	put a= x_Indexc1;
	put ;

b='have a good day';
x_Indexc2=indexc(b,'pleasant','very');
	put "x_Indexc2=indexc(b,'pleasant','very');";
	put b= x_Indexc2=;
	put;

s='asdf adog dog';
p='dog ';
x_IndexW1=indexw(s,p);
	put "x_IndexW1=indexw(s,p);";
	put s= a= x_IndexW1=;
	put ;

s='abcdef x=y';
p='def';
x_IndexW2=indexw(s,p);
	put "x_IndexW2=indexw(s,p);";
	put s= p= x_IndexW2=;
	put ;

x="abc,def@ xyz";
abc_IndexW3=indexw(x, " abc ", "@");
	put /* "bc_IndexW3=indexw(x, " abc ", "@%%);*/;
	put X= abc_IndexW3=;
	put ;

x="abc,def@ xyz";
CommaIndexW=indexw(x, ",", "@");
	put 'CommaIndexW=indexw(x, ",", "@");';
	put X= CommaIndexW=;
	put ;

x="abc,def% xyz";
DefIndexW=indexw(x, "def", "%");
	put 'DefIndexW=indexw(x, "def", "%");';
	put x= DefIndexW=;
	put ;

x="abc,def@ xyz";
AtIndexW=indexw(x, "@", "@");
	put 'AtIndexW=indexw(x, "@", "@");';
	put x= AtIndexW=;
	put ;

x="abc,def@ xyz";
xyzIndexW=indexw(x, " xyz", "@");
	put 'xyzIndexW=indexw(x, " xyz", "@");';
	put X= xyzIndexW=;
	put "";
	
CIndexWTrim=indexw(trimn(' '), ' ');
	put "CIndexWTrim=indexw(trimn(' '), ' ');";
	put CIndexWTrim=;
	put ;

gIndexW=indexw(' x y ', trimn(' '));
	put "gIndexW=indexw(' x y ', trimn(' '));";
 	put gIndexW=;
	put;
run;

68
1
�
��252
3
indexw(

1
332
1
91
/*
Might be better to use one of the find functions (find findc findw)
 find functions seem to be more powerful

The INDEX function searches source, from left to right, for the first occurrence OF THE STRING specified in excerpt,
 and returns the position in source of the string's first character.
 If the string is not found in source, INDEX returns a value of 0.
 If there are multiple occurrences of the string, INDEX returns only the position of the first occurrence.
The INDEXC function searches source, from left to right, for the first occurrence of ANY character present
 in the excerpts and returns the position in source of that character.
 If none of the characters in excerpt-1 through excerpt-n in source are found, INDEXC returns a value of 0.
The INDEXW function searches for sTRINGS THAT ARE WORDS,
	whereas the INDEX function searches for patterns as separate words or as parts of other words.
	INDEXC searches for any characters that are present in the excerpts.
*/

data _null_;
a='ABC.DEF (X=Y)';
b='X=Y';
x_Index=index(a,b);
	put "x_Index=index(a,b);";
	put a= b= x_index=;
	put ;

a='ABC.DEP (X2=Y1)';
x_Indexc1=indexc(a,'0123',';()=.');
	put "x_Indexc1=indexc(a,'0123',';()=.');";
	put a= x_Indexc1;
	put ;

b='have a good day';
x_Indexc2=indexc(b,'pleasant','very');
	put "x_Indexc2=indexc(b,'pleasant','very');";
	put b= x_Indexc2=;
	put;

s='asdf adog dog';
p='dog ';
x_IndexW1=indexw(s,p);
	put "x_IndexW1=indexw(s,p);";
	put s= a= x_IndexW1=;
	put ;

s='abcdef x=y';
p='def';
x_IndexW2=indexw(s,p);
	put "x_IndexW2=indexw(s,p);";
	put s= p= x_IndexW2=;
	put ;

x="abc,def@ xyz";
abc_IndexW3=indexw(x, " abc ", "@");
	put /* "bc_IndexW3=indexw(x, " abc ", "@%%);*/;
	put X= abc_IndexW3=;
	put ;

x="abc,def@ xyz";
CommaIndexW=indexw(x, ",", "@");
	put 'CommaIndexW=indexw(x, ",", "@");';
	put X= CommaIndexW=;
	put ;

x="abc,def% xyz";
DefIndexW=indexw(x, "def", "%");
	put 'DefIndexW=indexw(x, "def", "%");';
	put x= DefIndexW=;
	put ;

x="abc,def@ xyz";
AtIndexW=indexw(x, "@", "@");
	put 'AtIndexW=indexw(x, "@", "@");';
	put x= AtIndexW=;
	put ;

x="abc,def@ xyz";
xyzIndexW=indexw(x, " xyz", "@");
	put 'xyzIndexW=indexw(x, " xyz", "@");';
	put X= xyzIndexW=;
	put "";
	
CIndexWTrim=indexw(trimn(' '), ' ');
	put "CIndexWTrim=indexw(trimn(' '), ' ');";
	put CIndexWTrim=;
	put ;

gIndexW=indexw(' x y ', trimn(' '));
	put "gIndexW=indexw(' x y ', trimn(' '));";
 	put gIndexW=;
	put;
run;

69
1
•���252
3
inputc(

1
332
1
143
/*INPUTC INPUTN Putc PutN	Enables you to specify a character informat at run time.

INPUTC(source, informat<,w>)
source specifies a character constant, variable, or expression to which you want to apply the informat.
	informat is a character constant, variable, or expression that contains the character informat you want to apply to source.
	w is a numeric constant, variable, or expression that specifies a width to apply to the informat.
	Interaction: If you specify a width here, it overrides any width specification in the informat.
	Using the INPUT function is faster because you specify the informat at compile time.*/

			 proc format;
			 value typefmt 1='$groupx'
			 2='$groupy'
			 3='$groupz';
			 invalue $groupx 'positive'='agree'
			 'negative'='disagree'
			 'neutral'='notsure';
			 invalue $groupy 'positive'='accept'
			 'negative'='reject'
			 'neutral'='possible';

			 invalue $groupz 'positive'='pass'
			 'negative'='fail'
			 'neutral'='retest';
			 run;

			/*one file has several different types of tests*/
			 data TestValues;
			 input MedTest response $;
			 respinformat = put(MedTest, typefmt.);
			 word = inputc(response, respinformat);
			 datalines;
			 1 positive
			 1 negative
			 1 neutral
			 2 positive
			 2 negative
			 2 neutral
			 3 positive
			 3 negative
			 3 neutral
			 ;
			 run;
			 proc print data=TestValues;
			 run;	

/*INPUTN Function		INPUTN(source, informat<,w<,d>>)	Enables you to specify a numeric informat at run time.
 INPUTN(source, informat<,w<,d>>)
	source specifies a character constant, variable, or expression to which you want to apply the informat.
	informat is a character constant, variable or expression that contains the numeric informat you want to apply to source.
	w is a numeric constant, variable, or expression that specifies a width to apply to the informat.
		Interaction: If you specify a width here, it overrides any width specification in the informat.
	d is a numeric constant, variable, or expression that specifies the number of decimal places to use.
		Interaction: If you specify a number here, it overrides any decimal-place specification in the informat.
*/
			 proc format;
			 value readdate 1='date7.'
			 2='mmddyy8.';
			 run;

			 options yearcutoff=1920;
			 data fixdates (drop=start dateinformat);
			 length jobdesc $12;
			 input source id lname $ jobdesc $ start $;
			 dateinformat=put(source, readdate.);
			 newdate = inputn(start, dateinformat);
			 datalines;
			 1 1604 Ziminski writer 09aug90
			 1 2010 Clavell editor 26jan95
			 2 1833 Rivera writer 10/25/92
			 2 2222 Barnes proofreader 3/26/98
			 ;
			 proc print data=fixdates;
			 run;

/*
PUTC Function	PUTC(source, format.<,w>) 	Enables you to specify a character format at run time.
	source specifies a character constant, variable, or expression to which you want to apply the format.
	format. is a character constant, variable, or expression with a value that is the character format you want to apply to source.
	w is a numeric constant, variable, or expression that specifies a width to apply to the format.
		Interaction: If you specify a width here, it overrides any width specification in the format.
*/
				proc format;
				 value typefmt 1='$groupx'
				 2='$groupy'
				 3='$groupz';
				 value $groupx 'positive'='agree'
				 'negative'='disagree'
				 'neutral'='notsure ';
				 value $groupy 'positive'='accept'
				 'negative'='reject'
				 'neutral'='possible';

				 value $groupz 'positive'='pass '
				 'negative'='fail'
				 'neutral'='retest';
				run;

				data answers;
				 length word $ 8;
				 input type response $;
				 respfmt = put(type, typefmt.);
				 word = putc(response, respfmt);
				 datalines;
				1 positive
				1 negative
				1 neutral
				2 positive
				2 negative
				2 neutral
				3 positive
				3 negative
				3 neutral
				;
				proc print data=answers;
				run;

/*
PUTN Function	PUTN(source, format.<,w<,d>>) 	Enables you to specify a numeric format at run time.
	source specifies a numeric constant, variable, or expression to which you want to apply the format.
	format. is a character constant, variable, or expression with a value that is the numeric format you want to apply to source.
	w is a numeric constant, variable, or expression that specifies a width to apply to the format.
		Interaction: If you specify a width here, it overrides any width specification in the format.
	d is a numeric constant, variable, or expression that specifies the number of decimal places to use.
		Interaction: If you specify a number here, it overrides any decimal-place specification in the format.
*/

		proc format;
		 value writfmt 1='date9.'
		 2='mmddyy10.';
		run;
		data dates;
		 input number key;
		 datefmt=put(key,writfmt.);
		 date=putn(number,datefmt);
		 datalines;
		15756 1
		14552 2
		;

		proc print data=dates;run;

210
1
•���252
3
inputn(

1
332
1
143
/*INPUTC INPUTN Putc PutN	Enables you to specify a character informat at run time.

INPUTC(source, informat<,w>)
source specifies a character constant, variable, or expression to which you want to apply the informat.
	informat is a character constant, variable, or expression that contains the character informat you want to apply to source.
	w is a numeric constant, variable, or expression that specifies a width to apply to the informat.
	Interaction: If you specify a width here, it overrides any width specification in the informat.
	Using the INPUT function is faster because you specify the informat at compile time.*/

			 proc format;
			 value typefmt 1='$groupx'
			 2='$groupy'
			 3='$groupz';
			 invalue $groupx 'positive'='agree'
			 'negative'='disagree'
			 'neutral'='notsure';
			 invalue $groupy 'positive'='accept'
			 'negative'='reject'
			 'neutral'='possible';

			 invalue $groupz 'positive'='pass'
			 'negative'='fail'
			 'neutral'='retest';
			 run;

			/*one file has several different types of tests*/
			 data TestValues;
			 input MedTest response $;
			 respinformat = put(MedTest, typefmt.);
			 word = inputc(response, respinformat);
			 datalines;
			 1 positive
			 1 negative
			 1 neutral
			 2 positive
			 2 negative
			 2 neutral
			 3 positive
			 3 negative
			 3 neutral
			 ;
			 run;
			 proc print data=TestValues;
			 run;	

/*INPUTN Function		INPUTN(source, informat<,w<,d>>)	Enables you to specify a numeric informat at run time.
 INPUTN(source, informat<,w<,d>>)
	source specifies a character constant, variable, or expression to which you want to apply the informat.
	informat is a character constant, variable or expression that contains the numeric informat you want to apply to source.
	w is a numeric constant, variable, or expression that specifies a width to apply to the informat.
		Interaction: If you specify a width here, it overrides any width specification in the informat.
	d is a numeric constant, variable, or expression that specifies the number of decimal places to use.
		Interaction: If you specify a number here, it overrides any decimal-place specification in the informat.
*/
			 proc format;
			 value readdate 1='date7.'
			 2='mmddyy8.';
			 run;

			 options yearcutoff=1920;
			 data fixdates (drop=start dateinformat);
			 length jobdesc $12;
			 input source id lname $ jobdesc $ start $;
			 dateinformat=put(source, readdate.);
			 newdate = inputn(start, dateinformat);
			 datalines;
			 1 1604 Ziminski writer 09aug90
			 1 2010 Clavell editor 26jan95
			 2 1833 Rivera writer 10/25/92
			 2 2222 Barnes proofreader 3/26/98
			 ;
			 proc print data=fixdates;
			 run;

/*
PUTC Function	PUTC(source, format.<,w>) 	Enables you to specify a character format at run time.
	source specifies a character constant, variable, or expression to which you want to apply the format.
	format. is a character constant, variable, or expression with a value that is the character format you want to apply to source.
	w is a numeric constant, variable, or expression that specifies a width to apply to the format.
		Interaction: If you specify a width here, it overrides any width specification in the format.
*/
				proc format;
				 value typefmt 1='$groupx'
				 2='$groupy'
				 3='$groupz';
				 value $groupx 'positive'='agree'
				 'negative'='disagree'
				 'neutral'='notsure ';
				 value $groupy 'positive'='accept'
				 'negative'='reject'
				 'neutral'='possible';

				 value $groupz 'positive'='pass '
				 'negative'='fail'
				 'neutral'='retest';
				run;

				data answers;
				 length word $ 8;
				 input type response $;
				 respfmt = put(type, typefmt.);
				 word = putc(response, respfmt);
				 datalines;
				1 positive
				1 negative
				1 neutral
				2 positive
				2 negative
				2 neutral
				3 positive
				3 negative
				3 neutral
				;
				proc print data=answers;
				run;

/*
PUTN Function	PUTN(source, format.<,w<,d>>) 	Enables you to specify a numeric format at run time.
	source specifies a numeric constant, variable, or expression to which you want to apply the format.
	format. is a character constant, variable, or expression with a value that is the numeric format you want to apply to source.
	w is a numeric constant, variable, or expression that specifies a width to apply to the format.
		Interaction: If you specify a width here, it overrides any width specification in the format.
	d is a numeric constant, variable, or expression that specifies the number of decimal places to use.
		Interaction: If you specify a number here, it overrides any decimal-place specification in the format.
*/

		proc format;
		 value writfmt 1='date9.'
		 2='mmddyy10.';
		run;
		data dates;
		 input number key;
		 datefmt=put(key,writfmt.);
		 date=putn(number,datefmt);
		 datalines;
		15756 1
		14552 2
		;

		proc print data=dates;run;

266
1
*���252
3
int(

1
332
1
60
/*Min Function*/
/*
MEAN Function MEDIAN Function CALL SLEEP Routine SLEEP Function
CEIL Function FLOOR Function INT Function ROUND Function
RANGE Function
*/
data StatExamples;
x=10;
y=200;
i=123;
j=555;
z=1;
m=.;
 put z= x= i= y= j= m=;
MAxExample1=Max(x,y,i,j,z);
 put MAxExample1= ;
MAxExample2=Max(.,x,y,i,j,z);
 put MAxExample2= ;
MinExample1=Min(x,y,i,j,z);
 put MinExample1= ;
MinExample2=Min(.,x,y,i,j,z);
 put MinExample2= ;

MeanExample1=Mean(x,y,i,j,z);
 put MeanExample1= ;
MeanExample2=Mean(x,y, . ,i,j,z);
 put MeanExample2= ;

MedianExample1=Median(x,y,i,j,z);
 put MedianExample1= ;
MedianExample2=Median(x,y, . , i,j,z);
 put MedianExample2= ;

NExample=N(x,y,i,.,.,j,z);
 put "For the function NExample=N(x,y,i,.,.,j,z); " NExample= ;
NMissExample=NMiss(x,y,i,.,.,j,z); /*Missing values*/
 put "For the function NMissExample=NMiss(x,y,i,.,.,j,z); " NMissExample= ;
SumExample=Sum(x,y,i,.,j,z,m); /*Missing values*/
 put SumExample= ;

CeilExample =ceil(5.4637);
 put "CeilExample =ceil(5.4637) " CeilExample= ;
FloorExample =Floor(5.4637);
 put "FloorExample =Floor(5.4637) " FloorExample= ;
IntExample =Int(5.4637);
 put "IntExample =Int(5.4637);" IntExample= ;

RoundExample1=Round(5.4637,0.1);
 put "RoundExample1=Round(5.4637,0.1)" RoundExample1= ;
RoundExample2=Round(5.4637,0.01);
 put "RoundExample2=Round(5.4537,0.01);" RoundExample2= ;
RoundExample3=Round(5.4637,0.001);
 put "RoundExample3=Round(5.4637,0.001);" RoundExample3=;

RangeExample1=range(x,y,i,j,z);
 put "RangeExample1=range(x,y,i,j,z);" RangeExample1=;
RangeExample2=range(.,.,x,y,i,j,z); /*Missing values*/
 put "RangeExample2=range(.,.,x,y,i,j,z);" RangeExample2=;
;
run;
320
1
w���252
3
intck(

1
332
1
51
/*DATE Function DATEPART Function DATETIME Function DAY Function INTCK Function
INTNX Function MDY Function TIME Function TIMEPART Function TODAY Function*/

data _null_;
TodayDate=date(); /*Reads system clock*/
TodayToday=today(); /*Reads system clock*/
ThisInstant=DateTime(); /*Reads system clock*/
put TodayDate= TodayToday= ThisInstant=;
break=repeat("*",40);
put break;

DayFromDateTime=DatePart(ThisInstant); /*argument must be DateTime - NOT DATE*/

/*intck counts "time periods" between dates
 AND is tricky - read the documentation nad Bruce Gleason's paper*/
DaysBetween1=intck("day","1JAN00"D,"12JAN00"D);
put DaysBetween1=;
DaysBetween2=intck("day","12JAN00"D,"1JAN00"D);
put DaysBetween2=;

WeeksBetween1=intck("week","1JAN00"D,"12JAN00"D);
put WeeksBetween1=;
WeeksBetween2=intck("week","12JAN00"D,"1JAN00"D);
put WeeksBetween2=;

WeeksBetween3=intck("week","1JAN00"D,"2JAN00"D); /*ONE DAY!!!*/
put WeeksBetween3= /*for a one day difference*/;

/*INTNX advances a date AND is tricky - read the documentation*/
date1B=intnx('week','01jan95'd,5,'beginning');
put date1B / date1B Weekdate17.;

date1M=intnx('week','01jan95'd,5,'middle');
put date1M / date1M Weekdate17.;

date1E=intnx('week','01jan95'd,5,'end');
put date1E / date1E Weekdate17.;

date1S=intnx('week','01jan95'd,5,'sameday');
put date1S / date1S Weekdate17.;

date2=intnx('month','01jan95'd,5,'middle');
put date2 / date2 date7.;

date3=intnx('month','01jan95'd,5,'end');
put date3 / date3 date7.;

date4=intnx('month','01jan95'd,5,'sameday');
put date4 / date4 date7.;
run;

123
1
w���252
3
intnx(

1
332
1
51
/*DATE Function DATEPART Function DATETIME Function DAY Function INTCK Function
INTNX Function MDY Function TIME Function TIMEPART Function TODAY Function*/

data _null_;
TodayDate=date(); /*Reads system clock*/
TodayToday=today(); /*Reads system clock*/
ThisInstant=DateTime(); /*Reads system clock*/
put TodayDate= TodayToday= ThisInstant=;
break=repeat("*",40);
put break;

DayFromDateTime=DatePart(ThisInstant); /*argument must be DateTime - NOT DATE*/

/*intck counts "time periods" between dates
 AND is tricky - read the documentation nad Bruce Gleason's paper*/
DaysBetween1=intck("day","1JAN00"D,"12JAN00"D);
put DaysBetween1=;
DaysBetween2=intck("day","12JAN00"D,"1JAN00"D);
put DaysBetween2=;

WeeksBetween1=intck("week","1JAN00"D,"12JAN00"D);
put WeeksBetween1=;
WeeksBetween2=intck("week","12JAN00"D,"1JAN00"D);
put WeeksBetween2=;

WeeksBetween3=intck("week","1JAN00"D,"2JAN00"D); /*ONE DAY!!!*/
put WeeksBetween3= /*for a one day difference*/;

/*INTNX advances a date AND is tricky - read the documentation*/
date1B=intnx('week','01jan95'd,5,'beginning');
put date1B / date1B Weekdate17.;

date1M=intnx('week','01jan95'd,5,'middle');
put date1M / date1M Weekdate17.;

date1E=intnx('week','01jan95'd,5,'end');
put date1E / date1E Weekdate17.;

date1S=intnx('week','01jan95'd,5,'sameday');
put date1S / date1S Weekdate17.;

date2=intnx('month','01jan95'd,5,'middle');
put date2 / date2 date7.;

date3=intnx('month','01jan95'd,5,'end');
put date3 / date3 date7.;

date4=intnx('month','01jan95'd,5,'sameday');
put date4 / date4 date7.;
run;

124
1
*���252
3
intz(

1
332
1
1
intZ(number)
321
1
`���252
3
IORC_Lookup

1
332
1
44
/**
Section: IORC LOOKUP 	http://www.lexjansen.com/pharmasug/2003/tutorials/tu054.pdf
				http://www.nesug.info/Proceedings/nesug04/pm/pm18.pdf ;
				http://www.valsug.org/Meetings/20030311/lookuptechniques.ppt
				http://sausag.sasusers.net/presentations/0511GettingValueFromIndexing.ppt
				http://www.units.muohio.edu/doc/sassystem/sugi25/23/Dataware/p92.pdf
				http://www2.sas.com/proceedings/sugi25/25/po/25p234.pdf
***/
data GetInfo;
infile datalines;
input @1 name $char8.;
datalines;
Alfred
RUSS
Janet
CHRIS
Elmo
Jeffrey
Ed
Mary
Wally
;
run;
data BigFile(index=(name /unique));
set sashelp.class;
;
run;

data DataLookedUp;
set GetINfo;
Array BigChar(1) $ Sex;
Array BigNum(3) age height weight;
set BigFile key=name /unique;
if _IORC_ NE 0 then
	do;
		error=0; _iorc_=0;
		do I=1 to dim(BigChar);
			BigChar(i)="";
		end;
		do J=1 to dim(BigNum);
			BigNum(j)=".";
		end;
	end;
run;
366
1
1���252
3
juldate(

1
332
1
1
julDate(sasDate)
125
1
3���252
3
juldate7(

1
332
1
1
julDate7(sasDate)
126
1
p���252
3
kcompare(

1
332
1
1
kCompare(stringToSearch ,< startPosition ,< bytesToCompare ,>> stringToFind)
143
1
N���252
3
kcompress(

1
332
1
1
kCompress(string< , charactersToRremove>)
144
1
.���252
3
kcount(

1
332
1
1
kCount(string)
145
1
?���252
3
kindex(

1
332
1
1
kIndex(string , searchString)
147
1
[���252
3
kindexc(

1
332
1
1
kIndexC(string , characterList1< , characterList2<...>>)
148
1
3���252
3
kleft(

1
332
1
1
kleft(kLeft(string)
149
1
0���252
3
klength(

1
332
1
1
kLength(string)
150
1
2���252
3
klowcase(

1
332
1
1
kLowCase(string)
151
1
2���252
3
kreverse(

1
332
1
1
kReverse(string)
152
1
.���252
3
kright(

1
332
1
1
kRight(string)
153
1
J���252
3
kscan(

1
332
1
1
kScan(string , wordNumber< , delimiters>)
154
1
N���252
3
kstrcat(

1
332
1
1
kStrCat(string1 , string2< , string3<...>>)
155
1
Z���252
3
ksubstr(

1
332
1
1
kSubstr(string , characterPosition< , characterLength>)
156
1
R���252
3
ksubstrb(

1
332
1
1
kSubstrB(string , bytePosition< , byteLength>)
157
1
[���252
3
ktranslate(

1
332
1
1
kTranslate(string , to1 , from1< , to2 , from2<...>>)
158
1
,���252
3
ktrim(

1
332
1
1
kTrim(string)
159
1
H���252
3
ktruncate(

1
332
1
1
kTruncate(string , number , length)
160
1
0���252
3
kupcase(

1
332
1
1
kUpCase(string)
161
1
¿���252
3
kupdate(

1
332
1
1
kUpdate(string , characterPosition , characterLength<, charactersToReplace>)|kUpdate(string , characterPosition <, characterLength> , charactersToReplace)
162
1
®���252
3
kupdateb(

1
332
1
1
kUpdateB(string , bytePosition , byteLength<, charactersToReplace>)|kUpdate(string , bytePosition <, byteLength> , charactersToReplace))
163
1
F���252
3
kurtosis(

1
332
1
1
kurtosis(number1< , number2<...>>)
172
1
O���252
3
kverify(

1
332
1
1
kVerify(string , excerpt1< , excerpt2<...>>)
164
1
I���252
3
largest(

1
332
1
1
largest(k , number1< , number2<...>>)
173
1
Û
��252
3
lbound(

1
332
1
93
/*array Lbound Hbound Dim _temporary_*/
/* this example is weak on multi-dimensional arrays -
DIM always returns a total count of the number of elements in an array dimension.
HBOUND returns the literal value of the upper bound of an array dimension.
The LBOUND function returns the lower bound of a one-dimensional array
 or the lower bound of a specified dimension of a multidimensional array.
temporaty arrays are faster than "regular" arrays*/

data ClassCount;
retain age1-age20 /*temp arrays are automatically retianed*/;
set sashelp.class end=EOF;
array BigAgCt(0:25) _temporary_;
array SmlAgCt(20) age1-age20;

/*Initialize*/
if _n_=1 then
 Do;
 Do S=Lbound(SmlAgCt) to Hbound(SmlAgCt);
 SmlAgCt(S)=0;
	 put "initializing" S=;
 end;
 Do B=Lbound(BigAgCt) to Hbound(BigAgCt);
 BigAgCt(B)=0;
 End;
 End;

 /*Count students in ages*/
 SmlAgCt(age)=SmlAgCt(age)+1 ;
 put "Loading " age= SmlAgCt(age)= ;
/* Count students in ages*/
 BigAgCt(age)=BigAgCt(age)+1 ;

if EOF=1 then
 do loopS= Lbound(SmlAgCt) to Hbound(SmlAgCt) ;
 put "Printing values from the small array: "
 LoopS= "and the value is " SmlAgCt(LoopS);
 end;
 do loopB= Lbound(BigAgCt) to Hbound(BigAgCt) ;
 put "Printing values from the UntRetained array: "
 LoopB= "and the value is " BigAgCt(LoopB);
 end;
 run;

/*Dim*/
/*In this example, DIM returns a value of 5. Therefore, SAS repeats the statements in the DO loop five times. */
data _null_;
 array big{5} weight sex height state city;
 do i=1 to dim(big);
 Put "the value is" Bif(i);
 end;
run;

/*Examples of arrays*/
 data text; /*Character arrays*/
 array names{*} $ n1-n10;
 array capitals{*} $ c1-c10;
 input names{*};
 do i=1 to 10;
 capitals{i}=upcase(names{i});
 end;
 datalines;
smithers michaels gonzalez hurth frank bleigh
rounder joseph peters sam
;

/*To create a temporary array, use the _TEMPORARY_ argument. The following example creates a temporary array named TEST: */
options nodate pageno=1 linesize=80 pagesize=60;

data score2(drop=i);
 /*array test{3} t1-t3 (90 80 70);*/ /*Perm array and assign initial values*/
 array test{3} _temporary_ (90 80 70); /*Temp array and assign initial values*/
 array score{3} s1-s3;
 input id score{*};
 do i=1 to 3;
 if score{i}>=test{i} then
 do;
 NewScore=score{i};
 output;
 end;
 end;
 datalines;
 1234 99 60 82
 5678 80 85 75
 ;

 proc print noobs data=score2;
 title 'Data Set SCORE2';
 run;

23
1
Š���252
3
lcase(

1
332
1
7
/*UpCase(LCase(*/
data _null_;
x="this IS 1 instance";
Y=upcase(X);
z=LCase(X);
put x= y= z=;
run;
277
1
Ñ���252
3
left(

1
332
1
10
left(string) Left-aligns a character string.
data _null_;
X="now is the ";
Y=" Time for all good men ";

Z1=x||Y;
Z2=x||Left(Y);
put X= Y= Z1=;
put X= Y= Z2=;
run;
70
1
š���252
3
length(

1
332
1
10
length(string)
Returns the length of a non-blank character string, excluding trailing blanks,
 and returns 1 for a blank character string.
data _null_;
/* 12345678901234567890123456789012345678901234567890*/
target=" Now is the time for all good men ";
HowLong=length(target);
put "note how the put statement left aligns ";
put howlong= target=;
run;
71
1
/���252
3
lengthc(

1
332
1
1
lengthC(string)
72
1
/���252
3
lengthm(

1
332
1
1
lengthM(string)
73
1
/���252
3
lengthn(

1
332
1
1
lengthN(string)
74
1
6���252
3
lgamma(

1
332
1
1
lGamma(positiveNumber)
229
1
0���252
3
log(

1
332
1
1
log(positiveNumber)
230
1
4���252
3
log10(

1
332
1
1
log10(positiveNumber)
231
1
2���252
3
log2(

1
332
1
1
log2(positiveNumber)
232
1
9���252
3
logbeta(

1
332
1
1
logBeta(shape , shape)
233
1
A���252
3
logcdf(

1
332
1
1
logCdf('Bernoulli|beta|binomial|Cauchy|chiSquare|exponential|F|gamma|geometric|hyperGeometric|LaPlace|logistic|logNormal|negBinomial|normal|Gauss|normalMix|Pareto|Poissont|uniform|Wald|iGauss|Weibull' , quantile< , shapeLocationOrScaleParameter1< , shapeLocationOrScaleParameter2<...>>>)
242
1
A���252
3
logpdf(

1
332
1
1
logPdf('Bernoulli|beta|binomial|Cauchy|chiSquare|exponential|F|gamma|geometric|hyperGeometric|LaPlace|logistic|logNormal|negBinomial|normal|Gauss|normalMix|Pareto|Poissont|uniform|Wald|iGauss|Weibull' , quantile< , shapeLocationOrScaleParameter1< , shapeLocationOrScaleParameter2<...>>>)
243
1
A���252
3
logsdf(

1
332
1
1
logSdf('Bernoulli|beta|binomial|Cauchy|chiSquare|exponential|F|gamma|geometric|hyperGeometric|LaPlace|logistic|logNormal|negBinomial|normal|Gauss|normalMix|Pareto|Poissont|uniform|Wald|iGauss|Weibull' , quantile< , shapeLocationOrScaleParameter1< , shapeLocationOrScaleParameter2<...>>>)
244
1
/���252
3
lowcase(

1
332
1
1
lowCase(string)
75
1
<���252
3
mad(

1
332
1
1
mad(number1< , number2<...>>)
174
1
����252
3
MavenMergeWIndex

1
332
1
94
/**
MavenMergeWIndex
Section: 0- Create data sets
***/
Options nocenter;
Proc SQL;
create table WantInfo
 (SID Char(4) , Sex Char(1));
insert into WantInfo
values("0001","F")
values("3999","F")
values("2222","M")
values("3134","F")
/*values("6090","M")*/
values("7777","M");

proc print data=Wantinfo;
title "Wantinfo";
run;

Proc SQL;
Create table SWantInfo as
select * from WantINfo Order by SID;

proc print data=swantinfo;
title "swantinfo";
run;

proc SQL;
Create table BigLookIn
(SID char(4) , ARM Char(1));
insert into BigLookIn
values("8811","A")
values("9033","B")
values("9099","A")
values("2999","B")
values("3453","A")
values("3999","B")
values("4444","A")
values("4766","A")
values("5020","B")
values("0001","A")
values("0099","B")
values("1005","B")
values("1087","B")
values("2111","A")
values("5111","A")
values("6090","A")
values("6888","B")
values("7666","A")
values("7777","B")
values("8188","A");

/*Proc Print data=BigLookIn;*/
/*run;*/

Create table SBigLookIn as
select * from BigLookIn order by SID;

Create table SDupIn
(SID char(4) , test Char(1));
insert into SDupIn
values("0001","N") /*match*/
values("2222","A") /*match*/
values("2222","N") /*match*/
values("2222","A") /*match*/
values("2999","N")
values("3453","A")
values("3453","N")
values("3999","A"); /*match*/
quit;

proc print data=SBigLookIn;
title "SBigLookIn";
run;

/**
Section:__ Example 2 Maven merge WITH index on big file
***/
Proc SQL; /*Create an index to help the data engine where clause optimizer*/
Create index SID on BigLookIn(SID);
quit;

options msglevel=i;
data Example2;/*Use where and index to only read, from large, the obs in small*/
 merge SWantInfo (in=s)
 BigLookIn (where=(SID in(&WhereCL)));
 by SID;
 if s;
run;

options nocenter;
Proc Print data=ExaMPLE2;
run;
368
1
v
��252
3
MavenMergeWOIndex

1
332
1
108
/**
MavenMergeWOIndex
Section: 0- Create data sets
***/
Options nocenter;
Proc SQL;
create table WantInfo
 (SID Char(4) , Sex Char(1));
insert into WantInfo
values("0001","F")
values("3999","F")
values("2222","M")
values("3134","F")
/*values("6090","M")*/
values("7777","M");

proc print data=Wantinfo;
title "Wantinfo";
run;

Proc SQL;
Create table SWantInfo as
select * from WantINfo Order by SID;

proc print data=swantinfo;
title "swantinfo";
run;

proc SQL;
Create table BigLookIn
(SID char(4) , ARM Char(1));
insert into BigLookIn
values("8811","A")
values("9033","B")
values("9099","A")
values("2999","B")
values("3453","A")
values("3999","B")
values("4444","A")
values("4766","A")
values("5020","B")
values("0001","A")
values("0099","B")
values("1005","B")
values("1087","B")
values("2111","A")
values("5111","A")
values("6090","A")
values("6888","B")
values("7666","A")
values("7777","B")
values("8188","A");

/*Proc Print data=BigLookIn;*/
/*run;*/

Create table SBigLookIn as
select * from BigLookIn order by SID;

Create table SDupIn
(SID char(4) , test Char(1));
insert into SDupIn
values("0001","N") /*match*/
values("2222","A") /*match*/
values("2222","N") /*match*/
values("2222","A") /*match*/
values("2999","N")
values("3453","A")
values("3453","N")
values("3999","A"); /*match*/
quit;

proc print data=SBigLookIn;
title "SBigLookIn";
run;
/**
Section:__ Example 1 Maven merge w/o index
We are merging by subject to both files must be sorted (this is a non-indexed example)
***/
OPTIONS NOCENTER msglevel=i;
proc sql noprint;
 /*the distinct de-dupes the where clause- duplicates not required for the where*/
 select distinct(quote(SID)) into :WhereCL separated by ', '
 from SWantInfo
 ;
quit;
%put &WhereCl;

Proc SQL; /*Be sure that there is no index on LARGE*/
Drop index SID on BigLookIn;
quit;

options msglevel=i mprint symbolgen mlogic;
data Example1;
/*no index created yet, so top to bottom processing of large, with where filtering in data engine*/
/*Use where to only read, from large, the obs in small*/
 merge SWantInfo (in=s)
 /*Play with the two ways to read SBigLookin
 SBigLookIn (where=(SID in(&WhereCl)));*/
 SBigLookIn ;
 by SID;
 if s;
run;

Proc Print data=EXAMPLE1;
run;

296
1
*���252
3
max(

1
332
1
60
/*Min Function*/
/*
MEAN Function MEDIAN Function CALL SLEEP Routine SLEEP Function
CEIL Function FLOOR Function INT Function ROUND Function
RANGE Function
*/
data StatExamples;
x=10;
y=200;
i=123;
j=555;
z=1;
m=.;
 put z= x= i= y= j= m=;
MAxExample1=Max(x,y,i,j,z);
 put MAxExample1= ;
MAxExample2=Max(.,x,y,i,j,z);
 put MAxExample2= ;
MinExample1=Min(x,y,i,j,z);
 put MinExample1= ;
MinExample2=Min(.,x,y,i,j,z);
 put MinExample2= ;

MeanExample1=Mean(x,y,i,j,z);
 put MeanExample1= ;
MeanExample2=Mean(x,y, . ,i,j,z);
 put MeanExample2= ;

MedianExample1=Median(x,y,i,j,z);
 put MedianExample1= ;
MedianExample2=Median(x,y, . , i,j,z);
 put MedianExample2= ;

NExample=N(x,y,i,.,.,j,z);
 put "For the function NExample=N(x,y,i,.,.,j,z); " NExample= ;
NMissExample=NMiss(x,y,i,.,.,j,z); /*Missing values*/
 put "For the function NMissExample=NMiss(x,y,i,.,.,j,z); " NMissExample= ;
SumExample=Sum(x,y,i,.,j,z,m); /*Missing values*/
 put SumExample= ;

CeilExample =ceil(5.4637);
 put "CeilExample =ceil(5.4637) " CeilExample= ;
FloorExample =Floor(5.4637);
 put "FloorExample =Floor(5.4637) " FloorExample= ;
IntExample =Int(5.4637);
 put "IntExample =Int(5.4637);" IntExample= ;

RoundExample1=Round(5.4637,0.1);
 put "RoundExample1=Round(5.4637,0.1)" RoundExample1= ;
RoundExample2=Round(5.4637,0.01);
 put "RoundExample2=Round(5.4537,0.01);" RoundExample2= ;
RoundExample3=Round(5.4637,0.001);
 put "RoundExample3=Round(5.4637,0.001);" RoundExample3=;

RangeExample1=range(x,y,i,j,z);
 put "RangeExample1=range(x,y,i,j,z);" RangeExample1=;
RangeExample2=range(.,.,x,y,i,j,z); /*Missing values*/
 put "RangeExample2=range(.,.,x,y,i,j,z);" RangeExample2=;
;
run;
227
1
u���252
3
mdy(

1
332
1
51
/*DATE Function DATEPART Function DATETIME Function DAY Function INTCK Function
INTNX Function MDY Function TIME Function TIMEPART Function TODAY Function*/

data _null_;
TodayDate=date(); /*Reads system clock*/
TodayToday=today(); /*Reads system clock*/
ThisInstant=DateTime(); /*Reads system clock*/
put TodayDate= TodayToday= ThisInstant=;
break=repeat("*",40);
put break;

DayFromDateTime=DatePart(ThisInstant); /*argument must be DateTime - NOT DATE*/

/*intck counts "time periods" between dates
 AND is tricky - read the documentation nad Bruce Gleason's paper*/
DaysBetween1=intck("day","1JAN00"D,"12JAN00"D);
put DaysBetween1=;
DaysBetween2=intck("day","12JAN00"D,"1JAN00"D);
put DaysBetween2=;

WeeksBetween1=intck("week","1JAN00"D,"12JAN00"D);
put WeeksBetween1=;
WeeksBetween2=intck("week","12JAN00"D,"1JAN00"D);
put WeeksBetween2=;

WeeksBetween3=intck("week","1JAN00"D,"2JAN00"D); /*ONE DAY!!!*/
put WeeksBetween3= /*for a one day difference*/;

/*INTNX advances a date AND is tricky - read the documentation*/
date1B=intnx('week','01jan95'd,5,'beginning');
put date1B / date1B Weekdate17.;

date1M=intnx('week','01jan95'd,5,'middle');
put date1M / date1M Weekdate17.;

date1E=intnx('week','01jan95'd,5,'end');
put date1E / date1E Weekdate17.;

date1S=intnx('week','01jan95'd,5,'sameday');
put date1S / date1S Weekdate17.;

date2=intnx('month','01jan95'd,5,'middle');
put date2 / date2 date7.;

date3=intnx('month','01jan95'd,5,'end');
put date3 / date3 date7.;

date4=intnx('month','01jan95'd,5,'sameday');
put date4 / date4 date7.;
run;

127
1
+���252
3
mean(

1
332
1
60
/*Min Function*/
/*
MEAN Function MEDIAN Function CALL SLEEP Routine SLEEP Function
CEIL Function FLOOR Function INT Function ROUND Function
RANGE Function
*/
data StatExamples;
x=10;
y=200;
i=123;
j=555;
z=1;
m=.;
 put z= x= i= y= j= m=;
MAxExample1=Max(x,y,i,j,z);
 put MAxExample1= ;
MAxExample2=Max(.,x,y,i,j,z);
 put MAxExample2= ;
MinExample1=Min(x,y,i,j,z);
 put MinExample1= ;
MinExample2=Min(.,x,y,i,j,z);
 put MinExample2= ;

MeanExample1=Mean(x,y,i,j,z);
 put MeanExample1= ;
MeanExample2=Mean(x,y, . ,i,j,z);
 put MeanExample2= ;

MedianExample1=Median(x,y,i,j,z);
 put MedianExample1= ;
MedianExample2=Median(x,y, . , i,j,z);
 put MedianExample2= ;

NExample=N(x,y,i,.,.,j,z);
 put "For the function NExample=N(x,y,i,.,.,j,z); " NExample= ;
NMissExample=NMiss(x,y,i,.,.,j,z); /*Missing values*/
 put "For the function NMissExample=NMiss(x,y,i,.,.,j,z); " NMissExample= ;
SumExample=Sum(x,y,i,.,j,z,m); /*Missing values*/
 put SumExample= ;

CeilExample =ceil(5.4637);
 put "CeilExample =ceil(5.4637) " CeilExample= ;
FloorExample =Floor(5.4637);
 put "FloorExample =Floor(5.4637) " FloorExample= ;
IntExample =Int(5.4637);
 put "IntExample =Int(5.4637);" IntExample= ;

RoundExample1=Round(5.4637,0.1);
 put "RoundExample1=Round(5.4637,0.1)" RoundExample1= ;
RoundExample2=Round(5.4637,0.01);
 put "RoundExample2=Round(5.4537,0.01);" RoundExample2= ;
RoundExample3=Round(5.4637,0.001);
 put "RoundExample3=Round(5.4637,0.001);" RoundExample3=;

RangeExample1=range(x,y,i,j,z);
 put "RangeExample1=range(x,y,i,j,z);" RangeExample1=;
RangeExample2=range(.,.,x,y,i,j,z); /*Missing values*/
 put "RangeExample2=range(.,.,x,y,i,j,z);" RangeExample2=;
;
run;
176
1
-���252
3
median(

1
332
1
60
/*Min Function*/
/*
MEAN Function MEDIAN Function CALL SLEEP Routine SLEEP Function
CEIL Function FLOOR Function INT Function ROUND Function
RANGE Function
*/
data StatExamples;
x=10;
y=200;
i=123;
j=555;
z=1;
m=.;
 put z= x= i= y= j= m=;
MAxExample1=Max(x,y,i,j,z);
 put MAxExample1= ;
MAxExample2=Max(.,x,y,i,j,z);
 put MAxExample2= ;
MinExample1=Min(x,y,i,j,z);
 put MinExample1= ;
MinExample2=Min(.,x,y,i,j,z);
 put MinExample2= ;

MeanExample1=Mean(x,y,i,j,z);
 put MeanExample1= ;
MeanExample2=Mean(x,y, . ,i,j,z);
 put MeanExample2= ;

MedianExample1=Median(x,y,i,j,z);
 put MedianExample1= ;
MedianExample2=Median(x,y, . , i,j,z);
 put MedianExample2= ;

NExample=N(x,y,i,.,.,j,z);
 put "For the function NExample=N(x,y,i,.,.,j,z); " NExample= ;
NMissExample=NMiss(x,y,i,.,.,j,z); /*Missing values*/
 put "For the function NMissExample=NMiss(x,y,i,.,.,j,z); " NMissExample= ;
SumExample=Sum(x,y,i,.,j,z,m); /*Missing values*/
 put SumExample= ;

CeilExample =ceil(5.4637);
 put "CeilExample =ceil(5.4637) " CeilExample= ;
FloorExample =Floor(5.4637);
 put "FloorExample =Floor(5.4637) " FloorExample= ;
IntExample =Int(5.4637);
 put "IntExample =Int(5.4637);" IntExample= ;

RoundExample1=Round(5.4637,0.1);
 put "RoundExample1=Round(5.4637,0.1)" RoundExample1= ;
RoundExample2=Round(5.4637,0.01);
 put "RoundExample2=Round(5.4537,0.01);" RoundExample2= ;
RoundExample3=Round(5.4637,0.001);
 put "RoundExample3=Round(5.4637,0.001);" RoundExample3=;

RangeExample1=range(x,y,i,j,z);
 put "RangeExample1=range(x,y,i,j,z);" RangeExample1=;
RangeExample2=range(.,.,x,y,i,j,z); /*Missing values*/
 put "RangeExample2=range(.,.,x,y,i,j,z);" RangeExample2=;
;
run;
177
1
*���252
3
min(

1
332
1
60
/*Min Function*/
/*
MEAN Function MEDIAN Function CALL SLEEP Routine SLEEP Function
CEIL Function FLOOR Function INT Function ROUND Function
RANGE Function
*/
data StatExamples;
x=10;
y=200;
i=123;
j=555;
z=1;
m=.;
 put z= x= i= y= j= m=;
MAxExample1=Max(x,y,i,j,z);
 put MAxExample1= ;
MAxExample2=Max(.,x,y,i,j,z);
 put MAxExample2= ;
MinExample1=Min(x,y,i,j,z);
 put MinExample1= ;
MinExample2=Min(.,x,y,i,j,z);
 put MinExample2= ;

MeanExample1=Mean(x,y,i,j,z);
 put MeanExample1= ;
MeanExample2=Mean(x,y, . ,i,j,z);
 put MeanExample2= ;

MedianExample1=Median(x,y,i,j,z);
 put MedianExample1= ;
MedianExample2=Median(x,y, . , i,j,z);
 put MedianExample2= ;

NExample=N(x,y,i,.,.,j,z);
 put "For the function NExample=N(x,y,i,.,.,j,z); " NExample= ;
NMissExample=NMiss(x,y,i,.,.,j,z); /*Missing values*/
 put "For the function NMissExample=NMiss(x,y,i,.,.,j,z); " NMissExample= ;
SumExample=Sum(x,y,i,.,j,z,m); /*Missing values*/
 put SumExample= ;

CeilExample =ceil(5.4637);
 put "CeilExample =ceil(5.4637) " CeilExample= ;
FloorExample =Floor(5.4637);
 put "FloorExample =Floor(5.4637) " FloorExample= ;
IntExample =Int(5.4637);
 put "IntExample =Int(5.4637);" IntExample= ;

RoundExample1=Round(5.4637,0.1);
 put "RoundExample1=Round(5.4637,0.1)" RoundExample1= ;
RoundExample2=Round(5.4637,0.01);
 put "RoundExample2=Round(5.4537,0.01);" RoundExample2= ;
RoundExample3=Round(5.4637,0.001);
 put "RoundExample3=Round(5.4637,0.001);" RoundExample3=;

RangeExample1=range(x,y,i,j,z);
 put "RangeExample1=range(x,y,i,j,z);" RangeExample1=;
RangeExample2=range(.,.,x,y,i,j,z); /*Missing values*/
 put "RangeExample2=range(.,.,x,y,i,j,z);" RangeExample2=;
;
run;
213
1
;���252
3
minute(

1
332
1
1
minute(sasDateTime|sasTime)
128
1
c���252
3
missing(

1
332
1
20
/*Missing*/
data _null_;
NumAndMissing =.;
CharAndMissing ="";
CharAndOneBlank=" ";
NumAndValued =4;
CharAndValued ="SAS Stat";

NumAndMissingYN =missing(NumAndMissing);
 put NumAndMissing= NumAndMissingYN=;
CharAndMissingYN =missing(CharAndMissing);
 put CharAndMissing= CharAndMissingYN=;
CharAndOneBlankYN =missing(CharAndOneBlank);
 put CharAndOneBlank= CharAndOneBlankYN=;
NumAndValuedYN =missing(NumAndValued);
 put NumAndValued= NumAndValuedYN=;
CharAndValuedYN =missing(CharAndValued);
 put CharAndValued= CharAndValuedYN=;
;
run;
179
1
;���252
3
mod(

1
332
1
1
mod(numerator , denominator)
234
1
d���252
3
modulec(

1
332
1
1
moduleC(<cntlString , >moduleName< , argument1< , argument2<...>)
194
1
f���252
3
moduleic(

1
332
1
1
moduleIC(<cntlString , >moduleName< , argument1< , argument2<...>)
195
1
f���252
3
modulein(

1
332
1
1
moduleIN(<cntlString , >moduleName< , argument1< , argument2<...>)
196
1
d���252
3
modulen(

1
332
1
1
moduleN(<cntlString , >moduleName< , argument1< , argument2<...>)
197
1
-���252
3
month(

1
332
1
1
month(sasDate)
129
1
(���252
3
n(

1
332
1
60
/*Min Function*/
/*
MEAN Function MEDIAN Function CALL SLEEP Routine SLEEP Function
CEIL Function FLOOR Function INT Function ROUND Function
RANGE Function
*/
data StatExamples;
x=10;
y=200;
i=123;
j=555;
z=1;
m=.;
 put z= x= i= y= j= m=;
MAxExample1=Max(x,y,i,j,z);
 put MAxExample1= ;
MAxExample2=Max(.,x,y,i,j,z);
 put MAxExample2= ;
MinExample1=Min(x,y,i,j,z);
 put MinExample1= ;
MinExample2=Min(.,x,y,i,j,z);
 put MinExample2= ;

MeanExample1=Mean(x,y,i,j,z);
 put MeanExample1= ;
MeanExample2=Mean(x,y, . ,i,j,z);
 put MeanExample2= ;

MedianExample1=Median(x,y,i,j,z);
 put MedianExample1= ;
MedianExample2=Median(x,y, . , i,j,z);
 put MedianExample2= ;

NExample=N(x,y,i,.,.,j,z);
 put "For the function NExample=N(x,y,i,.,.,j,z); " NExample= ;
NMissExample=NMiss(x,y,i,.,.,j,z); /*Missing values*/
 put "For the function NMissExample=NMiss(x,y,i,.,.,j,z); " NMissExample= ;
SumExample=Sum(x,y,i,.,j,z,m); /*Missing values*/
 put SumExample= ;

CeilExample =ceil(5.4637);
 put "CeilExample =ceil(5.4637) " CeilExample= ;
FloorExample =Floor(5.4637);
 put "FloorExample =Floor(5.4637) " FloorExample= ;
IntExample =Int(5.4637);
 put "IntExample =Int(5.4637);" IntExample= ;

RoundExample1=Round(5.4637,0.1);
 put "RoundExample1=Round(5.4637,0.1)" RoundExample1= ;
RoundExample2=Round(5.4637,0.01);
 put "RoundExample2=Round(5.4537,0.01);" RoundExample2= ;
RoundExample3=Round(5.4637,0.001);
 put "RoundExample3=Round(5.4637,0.001);" RoundExample3=;

RangeExample1=range(x,y,i,j,z);
 put "RangeExample1=range(x,y,i,j,z);" RangeExample1=;
RangeExample2=range(.,.,x,y,i,j,z); /*Missing values*/
 put "RangeExample2=range(.,.,x,y,i,j,z);" RangeExample2=;
;
run;
180
1
>���252
3
nldate(

1
332
1
1
nlDate(sasDate , descriptor)
130
1
B���252
3
nldatm(

1
332
1
1
nlDatM(sasDateTime , descriptor)
131
1
1���252
3
nliteral(

1
332
1
1
nLiteral(string)
77
1
Y���252
3
nltime(

1
332
1
1
nlTime(sasDateTime|sasTime , descriptor , startPosition)
132
1
,���252
3
nmiss(

1
332
1
60
/*Min Function*/
/*
MEAN Function MEDIAN Function CALL SLEEP Routine SLEEP Function
CEIL Function FLOOR Function INT Function ROUND Function
RANGE Function
*/
data StatExamples;
x=10;
y=200;
i=123;
j=555;
z=1;
m=.;
 put z= x= i= y= j= m=;
MAxExample1=Max(x,y,i,j,z);
 put MAxExample1= ;
MAxExample2=Max(.,x,y,i,j,z);
 put MAxExample2= ;
MinExample1=Min(x,y,i,j,z);
 put MinExample1= ;
MinExample2=Min(.,x,y,i,j,z);
 put MinExample2= ;

MeanExample1=Mean(x,y,i,j,z);
 put MeanExample1= ;
MeanExample2=Mean(x,y, . ,i,j,z);
 put MeanExample2= ;

MedianExample1=Median(x,y,i,j,z);
 put MedianExample1= ;
MedianExample2=Median(x,y, . , i,j,z);
 put MedianExample2= ;

NExample=N(x,y,i,.,.,j,z);
 put "For the function NExample=N(x,y,i,.,.,j,z); " NExample= ;
NMissExample=NMiss(x,y,i,.,.,j,z); /*Missing values*/
 put "For the function NMissExample=NMiss(x,y,i,.,.,j,z); " NMissExample= ;
SumExample=Sum(x,y,i,.,j,z,m); /*Missing values*/
 put SumExample= ;

CeilExample =ceil(5.4637);
 put "CeilExample =ceil(5.4637) " CeilExample= ;
FloorExample =Floor(5.4637);
 put "FloorExample =Floor(5.4637) " FloorExample= ;
IntExample =Int(5.4637);
 put "IntExample =Int(5.4637);" IntExample= ;

RoundExample1=Round(5.4637,0.1);
 put "RoundExample1=Round(5.4637,0.1)" RoundExample1= ;
RoundExample2=Round(5.4637,0.01);
 put "RoundExample2=Round(5.4537,0.01);" RoundExample2= ;
RoundExample3=Round(5.4637,0.001);
 put "RoundExample3=Round(5.4637,0.001);" RoundExample3=;

RangeExample1=range(x,y,i,j,z);
 put "RangeExample1=range(x,y,i,j,z);" RangeExample1=;
RangeExample2=range(.,.,x,y,i,j,z); /*Missing values*/
 put "RangeExample2=range(.,.,x,y,i,j,z);" RangeExample2=;
;
run;
181
1
D���252
3
normal(

1
332
1
41
/*
it seems that the rand fucntion does it all

NORMAL Function	 variate that is generated from a normal distribution with mean 0 and variance 1.
 x=RANNOR(seed)
RANBIN Function	 Returns a random variate from a binomial distribution.
RANCAU Function Returns a random variate from a Cauchy distribution.
RANPOI(seed,m)
 x=RanPoi(seed,m)
 m is a numeric constant, variable, or expression that specifies the mean
RANEXP Function Returns a random variate from an exponential distribution.
RAND (dist, parm-1,...,parm-k) Generates random numbers from a distribution that you specify.
		Distribution Argument
		Bernoulli BERNOULLI
		Beta BETA
		Binomial BINOMIAL
		Cauchy CAUCHY
		Chi-Square CHISQUARE
		Erlang ERLANG
		Exponential EXPONENTIAL
		F F
		Gamma GAMMA
		Geometric GEOMETRIC
	Rannor(Lognormal LOGNORMAL
		Negative binomial NEGBINOMIAL
		Normal NORMAL|GAUSSIAN
		Poisson POISSON
		T T
		Tabled TABLE
		Triangular TRIANGLE
		Uniform UNIFORM
		Weibull WEIBULL

RANUNI Function	 returns a number the uniform distribution on the interval (0,1)
 x=RANUNI(seed) ;
 If you want to change the seed value during execution,
 you must use the CALL RANUNI routine instead of the RANUNI function.

UNIFORM See RanUNI
*/

278
1
þ���252
3
notalnum(

1
332
1
130
/*anyAlpha(string <, start >)
 Searches a character string for an alphabetic character,
 and returns the first position at which the character is found.
AnyDigit Searches a character string for a digit, and returns the first position at which the digit is found.
AnyName Searches a character string for a character that is valid in a SAS variable name under VALIDVARNAME=V7,
 and returns the first position at which that character is found.
AnyPunct Searches a character string for a punctuation character,
 and returns the first position at which that character is found.
AnySpace Searches a character string for:
 a white-space character (blank, horizontal and vertical tab, carriage return, line feed,
 and form feed),
 and returns the first position at which that character is found.	
AnyUpper Searches a character string for an uppercase letter,
 and returns the first position at which the letter is found. 	
AnyLower Searches a character string for a lowercase letter,
 and returns the first position at which the letter is found. 	

INDEX 	 Searches a character expression for a string of characters,
		 and returns the position of the string's first character for the first occurrence of the string.
INDEXC Searches a character expression for any of the specified characters,
 and returns the position of that character.
INDEXW Searches a character expression for a string that is specified as a word,
 and returns the position of the first character in the word.

NOTALNUM Searches a character string for a non-alphanumeric character,
 and returns the first position at which the character is found.
NOTALPHA Searches a character string for a nonalphabetic character,
 and returns the first position at which the character is found.
NOTCNTRL Searches a character string for a character that is not a control character,
 and returns the first position at which that character is found.
NOTDIGIT Searches a character string for any character that is not a digit,
 and returns the first position at which that character is found.
NOTFIRST Searches a character string for an invalid first character
 in a SAS variable name under VALIDVARNAME=V7, and returns the first position at which that character is found.
NOTGRAPH Searches a character string for a non-graphical character,
 and returns the first position at which that character is found.
NOTLOWER Searches a character string for a character that is not a lowercase letter,
 and returns the first position at which that character is found.
NOTNAME Searches a character string for an invalid character
 in a SAS variable name under VALIDVARNAME=V7,
 and returns the first position at which that character is found.
NOTPRINT Searches a character string for a nonprintable character,
 and returns the first position at which that character is found.
NOTPUNCT Searches a character string for a character that is not
 a punctuation character, and returns the first position at which that character is found.
NOTSPACE Searches a character string for a character that is not a white-space
 character (blank, horizontal and vertical tab, carriage return, line feed,
 and form feed), and returns the first position at which that character is found.
NOTUPPER Searches a character string for a character that is not an uppercase letter,
 and returns the first position at which that character is found.
NOTXDIGIT Searches a character string for a character that is not a hexadecimal character,
 and returns the first position at which that character is found.

*/
 data _null_;
 target="123!c5 D9_;91234567890";
 AnyAlpha1=AnyAlpha(target);
 AnyAlpha2=AnyAlpha(target,5);
 AnyAlpha3=AnyAlpha(target,-1);

 AnyDigit1=AnyDigit(target);
 AnyDigit2=AnyDigit(target,5);
 AnyDigit3=AnyDigit(target,-1);

 ANYPUNCT1=AnyPunct(target);
 ANYPUNCT2=AnyPunct(target,13);

 ANYUPPER1=AnyUpper(target);
 ANYUPPER2=AnyUpper(target,13);

 AnyLower1=AnyLower(target);
 AnyLower2=AnyLower(target,13);

 NOTALNUM1=NOTALNUM(target);
 NOTALNUM2=NOTALNUM(target);

 NOTALPHA1 =NOTALPHA(target);
 NOTALPHA2 =NOTALPHA(target,8);

 NOTCNTRL1 =NOTCNTRL(target);
 NOTCNTRL2 =NOTCNTRL(target,8);

 NOTDIGIT1 =NOTDIGIT(target);
 NOTDIGIT2 =NOTDIGIT(target,8);

 NOTFIRST1 =NOTFIRST(target);
 NOTFIRST2 =NOTFIRST(target,8);

 NOTGRAPH1 =NOTGRAPH(target);
 NOTGRAPH2 =NOTGRAPH(target,8);

 NOTLOWER1 =NOTLOWER(target);
 NOTLOWER2 =NOTLOWER(target,8);

 NOTNAME1 =NOTNAME(target);
 NOTNAME2 =NOTNAME(target,8);

 NOTPRINT1 =NOTPRINT(target);
 NOTPRINT2 =NOTPRINT(target,8);

 NOTPUNCT1 =NOTPUNCT(target);
 NOTPUNCT2 =NOTPUNCT(target,8);

 NOTSPACE1 =NOTSPACE(target);
 NOTSPACE2 =NOTSPACE(target,8);

 NOTUPPER1 =NOTUPPER(target);
 NOTUPPER2 =NOTUPPER(target,8);
/* NOTXDIGIT Function*/
 put target= AnyAlpha1= AnyAlpha2= AnyAlpha3=;
 put target= AnyDigit1= AnyDigit2= AnyDigit3=;
 put target= ANYPUNCT1= ANYPUNCT2= ;
 put target= ANYUpper1= ANYUpper2= ;
 put target= ANYLower1= ANYLower2= ;
 put target= NOTALNUM1= NOTALNUM2= ;
 put target= NOTALPHA1= NOTALPHA2= ;
 put target= NOTCNTRL1= NOTCNTRL2= ;
 put target= NOTDIGIT1= NOTDIGIT2= ;
 put target= NOTFIRST1= NOTFIRST2= ;
 put target= NOTGRAPH1= NOTGRAPH2= ;
 put target= NOTLOWER1= NOTLOWER2= ;
 put target= NOTNAME1= NOTNAME2= ;
 put target= NOTPRINT1= NOTPRINT2= ;
 put target= NOTPUNCT1= NOTPUNCT2= ;
 put target= NOTSPACE1= NOTSPACE2= ;
 put target= NOTUPPER1= NOTUPPER2= ;
run;
78
1
þ���252
3
notalpha(

1
332
1
130
/*anyAlpha(string <, start >)
 Searches a character string for an alphabetic character,
 and returns the first position at which the character is found.
AnyDigit Searches a character string for a digit, and returns the first position at which the digit is found.
AnyName Searches a character string for a character that is valid in a SAS variable name under VALIDVARNAME=V7,
 and returns the first position at which that character is found.
AnyPunct Searches a character string for a punctuation character,
 and returns the first position at which that character is found.
AnySpace Searches a character string for:
 a white-space character (blank, horizontal and vertical tab, carriage return, line feed,
 and form feed),
 and returns the first position at which that character is found.	
AnyUpper Searches a character string for an uppercase letter,
 and returns the first position at which the letter is found. 	
AnyLower Searches a character string for a lowercase letter,
 and returns the first position at which the letter is found. 	

INDEX 	 Searches a character expression for a string of characters,
		 and returns the position of the string's first character for the first occurrence of the string.
INDEXC Searches a character expression for any of the specified characters,
 and returns the position of that character.
INDEXW Searches a character expression for a string that is specified as a word,
 and returns the position of the first character in the word.

NOTALNUM Searches a character string for a non-alphanumeric character,
 and returns the first position at which the character is found.
NOTALPHA Searches a character string for a nonalphabetic character,
 and returns the first position at which the character is found.
NOTCNTRL Searches a character string for a character that is not a control character,
 and returns the first position at which that character is found.
NOTDIGIT Searches a character string for any character that is not a digit,
 and returns the first position at which that character is found.
NOTFIRST Searches a character string for an invalid first character
 in a SAS variable name under VALIDVARNAME=V7, and returns the first position at which that character is found.
NOTGRAPH Searches a character string for a non-graphical character,
 and returns the first position at which that character is found.
NOTLOWER Searches a character string for a character that is not a lowercase letter,
 and returns the first position at which that character is found.
NOTNAME Searches a character string for an invalid character
 in a SAS variable name under VALIDVARNAME=V7,
 and returns the first position at which that character is found.
NOTPRINT Searches a character string for a nonprintable character,
 and returns the first position at which that character is found.
NOTPUNCT Searches a character string for a character that is not
 a punctuation character, and returns the first position at which that character is found.
NOTSPACE Searches a character string for a character that is not a white-space
 character (blank, horizontal and vertical tab, carriage return, line feed,
 and form feed), and returns the first position at which that character is found.
NOTUPPER Searches a character string for a character that is not an uppercase letter,
 and returns the first position at which that character is found.
NOTXDIGIT Searches a character string for a character that is not a hexadecimal character,
 and returns the first position at which that character is found.

*/
 data _null_;
 target="123!c5 D9_;91234567890";
 AnyAlpha1=AnyAlpha(target);
 AnyAlpha2=AnyAlpha(target,5);
 AnyAlpha3=AnyAlpha(target,-1);

 AnyDigit1=AnyDigit(target);
 AnyDigit2=AnyDigit(target,5);
 AnyDigit3=AnyDigit(target,-1);

 ANYPUNCT1=AnyPunct(target);
 ANYPUNCT2=AnyPunct(target,13);

 ANYUPPER1=AnyUpper(target);
 ANYUPPER2=AnyUpper(target,13);

 AnyLower1=AnyLower(target);
 AnyLower2=AnyLower(target,13);

 NOTALNUM1=NOTALNUM(target);
 NOTALNUM2=NOTALNUM(target);

 NOTALPHA1 =NOTALPHA(target);
 NOTALPHA2 =NOTALPHA(target,8);

 NOTCNTRL1 =NOTCNTRL(target);
 NOTCNTRL2 =NOTCNTRL(target,8);

 NOTDIGIT1 =NOTDIGIT(target);
 NOTDIGIT2 =NOTDIGIT(target,8);

 NOTFIRST1 =NOTFIRST(target);
 NOTFIRST2 =NOTFIRST(target,8);

 NOTGRAPH1 =NOTGRAPH(target);
 NOTGRAPH2 =NOTGRAPH(target,8);

 NOTLOWER1 =NOTLOWER(target);
 NOTLOWER2 =NOTLOWER(target,8);

 NOTNAME1 =NOTNAME(target);
 NOTNAME2 =NOTNAME(target,8);

 NOTPRINT1 =NOTPRINT(target);
 NOTPRINT2 =NOTPRINT(target,8);

 NOTPUNCT1 =NOTPUNCT(target);
 NOTPUNCT2 =NOTPUNCT(target,8);

 NOTSPACE1 =NOTSPACE(target);
 NOTSPACE2 =NOTSPACE(target,8);

 NOTUPPER1 =NOTUPPER(target);
 NOTUPPER2 =NOTUPPER(target,8);
/* NOTXDIGIT Function*/
 put target= AnyAlpha1= AnyAlpha2= AnyAlpha3=;
 put target= AnyDigit1= AnyDigit2= AnyDigit3=;
 put target= ANYPUNCT1= ANYPUNCT2= ;
 put target= ANYUpper1= ANYUpper2= ;
 put target= ANYLower1= ANYLower2= ;
 put target= NOTALNUM1= NOTALNUM2= ;
 put target= NOTALPHA1= NOTALPHA2= ;
 put target= NOTCNTRL1= NOTCNTRL2= ;
 put target= NOTDIGIT1= NOTDIGIT2= ;
 put target= NOTFIRST1= NOTFIRST2= ;
 put target= NOTGRAPH1= NOTGRAPH2= ;
 put target= NOTLOWER1= NOTLOWER2= ;
 put target= NOTNAME1= NOTNAME2= ;
 put target= NOTPRINT1= NOTPRINT2= ;
 put target= NOTPUNCT1= NOTPUNCT2= ;
 put target= NOTSPACE1= NOTSPACE2= ;
 put target= NOTUPPER1= NOTUPPER2= ;
run;
79
1
þ���252
3
notcntrl(

1
332
1
130
/*anyAlpha(string <, start >)
 Searches a character string for an alphabetic character,
 and returns the first position at which the character is found.
AnyDigit Searches a character string for a digit, and returns the first position at which the digit is found.
AnyName Searches a character string for a character that is valid in a SAS variable name under VALIDVARNAME=V7,
 and returns the first position at which that character is found.
AnyPunct Searches a character string for a punctuation character,
 and returns the first position at which that character is found.
AnySpace Searches a character string for:
 a white-space character (blank, horizontal and vertical tab, carriage return, line feed,
 and form feed),
 and returns the first position at which that character is found.	
AnyUpper Searches a character string for an uppercase letter,
 and returns the first position at which the letter is found. 	
AnyLower Searches a character string for a lowercase letter,
 and returns the first position at which the letter is found. 	

INDEX 	 Searches a character expression for a string of characters,
		 and returns the position of the string's first character for the first occurrence of the string.
INDEXC Searches a character expression for any of the specified characters,
 and returns the position of that character.
INDEXW Searches a character expression for a string that is specified as a word,
 and returns the position of the first character in the word.

NOTALNUM Searches a character string for a non-alphanumeric character,
 and returns the first position at which the character is found.
NOTALPHA Searches a character string for a nonalphabetic character,
 and returns the first position at which the character is found.
NOTCNTRL Searches a character string for a character that is not a control character,
 and returns the first position at which that character is found.
NOTDIGIT Searches a character string for any character that is not a digit,
 and returns the first position at which that character is found.
NOTFIRST Searches a character string for an invalid first character
 in a SAS variable name under VALIDVARNAME=V7, and returns the first position at which that character is found.
NOTGRAPH Searches a character string for a non-graphical character,
 and returns the first position at which that character is found.
NOTLOWER Searches a character string for a character that is not a lowercase letter,
 and returns the first position at which that character is found.
NOTNAME Searches a character string for an invalid character
 in a SAS variable name under VALIDVARNAME=V7,
 and returns the first position at which that character is found.
NOTPRINT Searches a character string for a nonprintable character,
 and returns the first position at which that character is found.
NOTPUNCT Searches a character string for a character that is not
 a punctuation character, and returns the first position at which that character is found.
NOTSPACE Searches a character string for a character that is not a white-space
 character (blank, horizontal and vertical tab, carriage return, line feed,
 and form feed), and returns the first position at which that character is found.
NOTUPPER Searches a character string for a character that is not an uppercase letter,
 and returns the first position at which that character is found.
NOTXDIGIT Searches a character string for a character that is not a hexadecimal character,
 and returns the first position at which that character is found.

*/
 data _null_;
 target="123!c5 D9_;91234567890";
 AnyAlpha1=AnyAlpha(target);
 AnyAlpha2=AnyAlpha(target,5);
 AnyAlpha3=AnyAlpha(target,-1);

 AnyDigit1=AnyDigit(target);
 AnyDigit2=AnyDigit(target,5);
 AnyDigit3=AnyDigit(target,-1);

 ANYPUNCT1=AnyPunct(target);
 ANYPUNCT2=AnyPunct(target,13);

 ANYUPPER1=AnyUpper(target);
 ANYUPPER2=AnyUpper(target,13);

 AnyLower1=AnyLower(target);
 AnyLower2=AnyLower(target,13);

 NOTALNUM1=NOTALNUM(target);
 NOTALNUM2=NOTALNUM(target);

 NOTALPHA1 =NOTALPHA(target);
 NOTALPHA2 =NOTALPHA(target,8);

 NOTCNTRL1 =NOTCNTRL(target);
 NOTCNTRL2 =NOTCNTRL(target,8);

 NOTDIGIT1 =NOTDIGIT(target);
 NOTDIGIT2 =NOTDIGIT(target,8);

 NOTFIRST1 =NOTFIRST(target);
 NOTFIRST2 =NOTFIRST(target,8);

 NOTGRAPH1 =NOTGRAPH(target);
 NOTGRAPH2 =NOTGRAPH(target,8);

 NOTLOWER1 =NOTLOWER(target);
 NOTLOWER2 =NOTLOWER(target,8);

 NOTNAME1 =NOTNAME(target);
 NOTNAME2 =NOTNAME(target,8);

 NOTPRINT1 =NOTPRINT(target);
 NOTPRINT2 =NOTPRINT(target,8);

 NOTPUNCT1 =NOTPUNCT(target);
 NOTPUNCT2 =NOTPUNCT(target,8);

 NOTSPACE1 =NOTSPACE(target);
 NOTSPACE2 =NOTSPACE(target,8);

 NOTUPPER1 =NOTUPPER(target);
 NOTUPPER2 =NOTUPPER(target,8);
/* NOTXDIGIT Function*/
 put target= AnyAlpha1= AnyAlpha2= AnyAlpha3=;
 put target= AnyDigit1= AnyDigit2= AnyDigit3=;
 put target= ANYPUNCT1= ANYPUNCT2= ;
 put target= ANYUpper1= ANYUpper2= ;
 put target= ANYLower1= ANYLower2= ;
 put target= NOTALNUM1= NOTALNUM2= ;
 put target= NOTALPHA1= NOTALPHA2= ;
 put target= NOTCNTRL1= NOTCNTRL2= ;
 put target= NOTDIGIT1= NOTDIGIT2= ;
 put target= NOTFIRST1= NOTFIRST2= ;
 put target= NOTGRAPH1= NOTGRAPH2= ;
 put target= NOTLOWER1= NOTLOWER2= ;
 put target= NOTNAME1= NOTNAME2= ;
 put target= NOTPRINT1= NOTPRINT2= ;
 put target= NOTPUNCT1= NOTPUNCT2= ;
 put target= NOTSPACE1= NOTSPACE2= ;
 put target= NOTUPPER1= NOTUPPER2= ;
run;
80
1
þ���252
3
notdigit(

1
332
1
130
/*anyAlpha(string <, start >)
 Searches a character string for an alphabetic character,
 and returns the first position at which the character is found.
AnyDigit Searches a character string for a digit, and returns the first position at which the digit is found.
AnyName Searches a character string for a character that is valid in a SAS variable name under VALIDVARNAME=V7,
 and returns the first position at which that character is found.
AnyPunct Searches a character string for a punctuation character,
 and returns the first position at which that character is found.
AnySpace Searches a character string for:
 a white-space character (blank, horizontal and vertical tab, carriage return, line feed,
 and form feed),
 and returns the first position at which that character is found.	
AnyUpper Searches a character string for an uppercase letter,
 and returns the first position at which the letter is found. 	
AnyLower Searches a character string for a lowercase letter,
 and returns the first position at which the letter is found. 	

INDEX 	 Searches a character expression for a string of characters,
		 and returns the position of the string's first character for the first occurrence of the string.
INDEXC Searches a character expression for any of the specified characters,
 and returns the position of that character.
INDEXW Searches a character expression for a string that is specified as a word,
 and returns the position of the first character in the word.

NOTALNUM Searches a character string for a non-alphanumeric character,
 and returns the first position at which the character is found.
NOTALPHA Searches a character string for a nonalphabetic character,
 and returns the first position at which the character is found.
NOTCNTRL Searches a character string for a character that is not a control character,
 and returns the first position at which that character is found.
NOTDIGIT Searches a character string for any character that is not a digit,
 and returns the first position at which that character is found.
NOTFIRST Searches a character string for an invalid first character
 in a SAS variable name under VALIDVARNAME=V7, and returns the first position at which that character is found.
NOTGRAPH Searches a character string for a non-graphical character,
 and returns the first position at which that character is found.
NOTLOWER Searches a character string for a character that is not a lowercase letter,
 and returns the first position at which that character is found.
NOTNAME Searches a character string for an invalid character
 in a SAS variable name under VALIDVARNAME=V7,
 and returns the first position at which that character is found.
NOTPRINT Searches a character string for a nonprintable character,
 and returns the first position at which that character is found.
NOTPUNCT Searches a character string for a character that is not
 a punctuation character, and returns the first position at which that character is found.
NOTSPACE Searches a character string for a character that is not a white-space
 character (blank, horizontal and vertical tab, carriage return, line feed,
 and form feed), and returns the first position at which that character is found.
NOTUPPER Searches a character string for a character that is not an uppercase letter,
 and returns the first position at which that character is found.
NOTXDIGIT Searches a character string for a character that is not a hexadecimal character,
 and returns the first position at which that character is found.

*/
 data _null_;
 target="123!c5 D9_;91234567890";
 AnyAlpha1=AnyAlpha(target);
 AnyAlpha2=AnyAlpha(target,5);
 AnyAlpha3=AnyAlpha(target,-1);

 AnyDigit1=AnyDigit(target);
 AnyDigit2=AnyDigit(target,5);
 AnyDigit3=AnyDigit(target,-1);

 ANYPUNCT1=AnyPunct(target);
 ANYPUNCT2=AnyPunct(target,13);

 ANYUPPER1=AnyUpper(target);
 ANYUPPER2=AnyUpper(target,13);

 AnyLower1=AnyLower(target);
 AnyLower2=AnyLower(target,13);

 NOTALNUM1=NOTALNUM(target);
 NOTALNUM2=NOTALNUM(target);

 NOTALPHA1 =NOTALPHA(target);
 NOTALPHA2 =NOTALPHA(target,8);

 NOTCNTRL1 =NOTCNTRL(target);
 NOTCNTRL2 =NOTCNTRL(target,8);

 NOTDIGIT1 =NOTDIGIT(target);
 NOTDIGIT2 =NOTDIGIT(target,8);

 NOTFIRST1 =NOTFIRST(target);
 NOTFIRST2 =NOTFIRST(target,8);

 NOTGRAPH1 =NOTGRAPH(target);
 NOTGRAPH2 =NOTGRAPH(target,8);

 NOTLOWER1 =NOTLOWER(target);
 NOTLOWER2 =NOTLOWER(target,8);

 NOTNAME1 =NOTNAME(target);
 NOTNAME2 =NOTNAME(target,8);

 NOTPRINT1 =NOTPRINT(target);
 NOTPRINT2 =NOTPRINT(target,8);

 NOTPUNCT1 =NOTPUNCT(target);
 NOTPUNCT2 =NOTPUNCT(target,8);

 NOTSPACE1 =NOTSPACE(target);
 NOTSPACE2 =NOTSPACE(target,8);

 NOTUPPER1 =NOTUPPER(target);
 NOTUPPER2 =NOTUPPER(target,8);
/* NOTXDIGIT Function*/
 put target= AnyAlpha1= AnyAlpha2= AnyAlpha3=;
 put target= AnyDigit1= AnyDigit2= AnyDigit3=;
 put target= ANYPUNCT1= ANYPUNCT2= ;
 put target= ANYUpper1= ANYUpper2= ;
 put target= ANYLower1= ANYLower2= ;
 put target= NOTALNUM1= NOTALNUM2= ;
 put target= NOTALPHA1= NOTALPHA2= ;
 put target= NOTCNTRL1= NOTCNTRL2= ;
 put target= NOTDIGIT1= NOTDIGIT2= ;
 put target= NOTFIRST1= NOTFIRST2= ;
 put target= NOTGRAPH1= NOTGRAPH2= ;
 put target= NOTLOWER1= NOTLOWER2= ;
 put target= NOTNAME1= NOTNAME2= ;
 put target= NOTPRINT1= NOTPRINT2= ;
 put target= NOTPUNCT1= NOTPUNCT2= ;
 put target= NOTSPACE1= NOTSPACE2= ;
 put target= NOTUPPER1= NOTUPPER2= ;
run;
81
1
þ���252
3
notfirst(

1
332
1
130
/*anyAlpha(string <, start >)
 Searches a character string for an alphabetic character,
 and returns the first position at which the character is found.
AnyDigit Searches a character string for a digit, and returns the first position at which the digit is found.
AnyName Searches a character string for a character that is valid in a SAS variable name under VALIDVARNAME=V7,
 and returns the first position at which that character is found.
AnyPunct Searches a character string for a punctuation character,
 and returns the first position at which that character is found.
AnySpace Searches a character string for:
 a white-space character (blank, horizontal and vertical tab, carriage return, line feed,
 and form feed),
 and returns the first position at which that character is found.	
AnyUpper Searches a character string for an uppercase letter,
 and returns the first position at which the letter is found. 	
AnyLower Searches a character string for a lowercase letter,
 and returns the first position at which the letter is found. 	

INDEX 	 Searches a character expression for a string of characters,
		 and returns the position of the string's first character for the first occurrence of the string.
INDEXC Searches a character expression for any of the specified characters,
 and returns the position of that character.
INDEXW Searches a character expression for a string that is specified as a word,
 and returns the position of the first character in the word.

NOTALNUM Searches a character string for a non-alphanumeric character,
 and returns the first position at which the character is found.
NOTALPHA Searches a character string for a nonalphabetic character,
 and returns the first position at which the character is found.
NOTCNTRL Searches a character string for a character that is not a control character,
 and returns the first position at which that character is found.
NOTDIGIT Searches a character string for any character that is not a digit,
 and returns the first position at which that character is found.
NOTFIRST Searches a character string for an invalid first character
 in a SAS variable name under VALIDVARNAME=V7, and returns the first position at which that character is found.
NOTGRAPH Searches a character string for a non-graphical character,
 and returns the first position at which that character is found.
NOTLOWER Searches a character string for a character that is not a lowercase letter,
 and returns the first position at which that character is found.
NOTNAME Searches a character string for an invalid character
 in a SAS variable name under VALIDVARNAME=V7,
 and returns the first position at which that character is found.
NOTPRINT Searches a character string for a nonprintable character,
 and returns the first position at which that character is found.
NOTPUNCT Searches a character string for a character that is not
 a punctuation character, and returns the first position at which that character is found.
NOTSPACE Searches a character string for a character that is not a white-space
 character (blank, horizontal and vertical tab, carriage return, line feed,
 and form feed), and returns the first position at which that character is found.
NOTUPPER Searches a character string for a character that is not an uppercase letter,
 and returns the first position at which that character is found.
NOTXDIGIT Searches a character string for a character that is not a hexadecimal character,
 and returns the first position at which that character is found.

*/
 data _null_;
 target="123!c5 D9_;91234567890";
 AnyAlpha1=AnyAlpha(target);
 AnyAlpha2=AnyAlpha(target,5);
 AnyAlpha3=AnyAlpha(target,-1);

 AnyDigit1=AnyDigit(target);
 AnyDigit2=AnyDigit(target,5);
 AnyDigit3=AnyDigit(target,-1);

 ANYPUNCT1=AnyPunct(target);
 ANYPUNCT2=AnyPunct(target,13);

 ANYUPPER1=AnyUpper(target);
 ANYUPPER2=AnyUpper(target,13);

 AnyLower1=AnyLower(target);
 AnyLower2=AnyLower(target,13);

 NOTALNUM1=NOTALNUM(target);
 NOTALNUM2=NOTALNUM(target);

 NOTALPHA1 =NOTALPHA(target);
 NOTALPHA2 =NOTALPHA(target,8);

 NOTCNTRL1 =NOTCNTRL(target);
 NOTCNTRL2 =NOTCNTRL(target,8);

 NOTDIGIT1 =NOTDIGIT(target);
 NOTDIGIT2 =NOTDIGIT(target,8);

 NOTFIRST1 =NOTFIRST(target);
 NOTFIRST2 =NOTFIRST(target,8);

 NOTGRAPH1 =NOTGRAPH(target);
 NOTGRAPH2 =NOTGRAPH(target,8);

 NOTLOWER1 =NOTLOWER(target);
 NOTLOWER2 =NOTLOWER(target,8);

 NOTNAME1 =NOTNAME(target);
 NOTNAME2 =NOTNAME(target,8);

 NOTPRINT1 =NOTPRINT(target);
 NOTPRINT2 =NOTPRINT(target,8);

 NOTPUNCT1 =NOTPUNCT(target);
 NOTPUNCT2 =NOTPUNCT(target,8);

 NOTSPACE1 =NOTSPACE(target);
 NOTSPACE2 =NOTSPACE(target,8);

 NOTUPPER1 =NOTUPPER(target);
 NOTUPPER2 =NOTUPPER(target,8);
/* NOTXDIGIT Function*/
 put target= AnyAlpha1= AnyAlpha2= AnyAlpha3=;
 put target= AnyDigit1= AnyDigit2= AnyDigit3=;
 put target= ANYPUNCT1= ANYPUNCT2= ;
 put target= ANYUpper1= ANYUpper2= ;
 put target= ANYLower1= ANYLower2= ;
 put target= NOTALNUM1= NOTALNUM2= ;
 put target= NOTALPHA1= NOTALPHA2= ;
 put target= NOTCNTRL1= NOTCNTRL2= ;
 put target= NOTDIGIT1= NOTDIGIT2= ;
 put target= NOTFIRST1= NOTFIRST2= ;
 put target= NOTGRAPH1= NOTGRAPH2= ;
 put target= NOTLOWER1= NOTLOWER2= ;
 put target= NOTNAME1= NOTNAME2= ;
 put target= NOTPRINT1= NOTPRINT2= ;
 put target= NOTPUNCT1= NOTPUNCT2= ;
 put target= NOTSPACE1= NOTSPACE2= ;
 put target= NOTUPPER1= NOTUPPER2= ;
run;
82
1
þ���252
3
notgraph(

1
332
1
130
/*anyAlpha(string <, start >)
 Searches a character string for an alphabetic character,
 and returns the first position at which the character is found.
AnyDigit Searches a character string for a digit, and returns the first position at which the digit is found.
AnyName Searches a character string for a character that is valid in a SAS variable name under VALIDVARNAME=V7,
 and returns the first position at which that character is found.
AnyPunct Searches a character string for a punctuation character,
 and returns the first position at which that character is found.
AnySpace Searches a character string for:
 a white-space character (blank, horizontal and vertical tab, carriage return, line feed,
 and form feed),
 and returns the first position at which that character is found.	
AnyUpper Searches a character string for an uppercase letter,
 and returns the first position at which the letter is found. 	
AnyLower Searches a character string for a lowercase letter,
 and returns the first position at which the letter is found. 	

INDEX 	 Searches a character expression for a string of characters,
		 and returns the position of the string's first character for the first occurrence of the string.
INDEXC Searches a character expression for any of the specified characters,
 and returns the position of that character.
INDEXW Searches a character expression for a string that is specified as a word,
 and returns the position of the first character in the word.

NOTALNUM Searches a character string for a non-alphanumeric character,
 and returns the first position at which the character is found.
NOTALPHA Searches a character string for a nonalphabetic character,
 and returns the first position at which the character is found.
NOTCNTRL Searches a character string for a character that is not a control character,
 and returns the first position at which that character is found.
NOTDIGIT Searches a character string for any character that is not a digit,
 and returns the first position at which that character is found.
NOTFIRST Searches a character string for an invalid first character
 in a SAS variable name under VALIDVARNAME=V7, and returns the first position at which that character is found.
NOTGRAPH Searches a character string for a non-graphical character,
 and returns the first position at which that character is found.
NOTLOWER Searches a character string for a character that is not a lowercase letter,
 and returns the first position at which that character is found.
NOTNAME Searches a character string for an invalid character
 in a SAS variable name under VALIDVARNAME=V7,
 and returns the first position at which that character is found.
NOTPRINT Searches a character string for a nonprintable character,
 and returns the first position at which that character is found.
NOTPUNCT Searches a character string for a character that is not
 a punctuation character, and returns the first position at which that character is found.
NOTSPACE Searches a character string for a character that is not a white-space
 character (blank, horizontal and vertical tab, carriage return, line feed,
 and form feed), and returns the first position at which that character is found.
NOTUPPER Searches a character string for a character that is not an uppercase letter,
 and returns the first position at which that character is found.
NOTXDIGIT Searches a character string for a character that is not a hexadecimal character,
 and returns the first position at which that character is found.

*/
 data _null_;
 target="123!c5 D9_;91234567890";
 AnyAlpha1=AnyAlpha(target);
 AnyAlpha2=AnyAlpha(target,5);
 AnyAlpha3=AnyAlpha(target,-1);

 AnyDigit1=AnyDigit(target);
 AnyDigit2=AnyDigit(target,5);
 AnyDigit3=AnyDigit(target,-1);

 ANYPUNCT1=AnyPunct(target);
 ANYPUNCT2=AnyPunct(target,13);

 ANYUPPER1=AnyUpper(target);
 ANYUPPER2=AnyUpper(target,13);

 AnyLower1=AnyLower(target);
 AnyLower2=AnyLower(target,13);

 NOTALNUM1=NOTALNUM(target);
 NOTALNUM2=NOTALNUM(target);

 NOTALPHA1 =NOTALPHA(target);
 NOTALPHA2 =NOTALPHA(target,8);

 NOTCNTRL1 =NOTCNTRL(target);
 NOTCNTRL2 =NOTCNTRL(target,8);

 NOTDIGIT1 =NOTDIGIT(target);
 NOTDIGIT2 =NOTDIGIT(target,8);

 NOTFIRST1 =NOTFIRST(target);
 NOTFIRST2 =NOTFIRST(target,8);

 NOTGRAPH1 =NOTGRAPH(target);
 NOTGRAPH2 =NOTGRAPH(target,8);

 NOTLOWER1 =NOTLOWER(target);
 NOTLOWER2 =NOTLOWER(target,8);

 NOTNAME1 =NOTNAME(target);
 NOTNAME2 =NOTNAME(target,8);

 NOTPRINT1 =NOTPRINT(target);
 NOTPRINT2 =NOTPRINT(target,8);

 NOTPUNCT1 =NOTPUNCT(target);
 NOTPUNCT2 =NOTPUNCT(target,8);

 NOTSPACE1 =NOTSPACE(target);
 NOTSPACE2 =NOTSPACE(target,8);

 NOTUPPER1 =NOTUPPER(target);
 NOTUPPER2 =NOTUPPER(target,8);
/* NOTXDIGIT Function*/
 put target= AnyAlpha1= AnyAlpha2= AnyAlpha3=;
 put target= AnyDigit1= AnyDigit2= AnyDigit3=;
 put target= ANYPUNCT1= ANYPUNCT2= ;
 put target= ANYUpper1= ANYUpper2= ;
 put target= ANYLower1= ANYLower2= ;
 put target= NOTALNUM1= NOTALNUM2= ;
 put target= NOTALPHA1= NOTALPHA2= ;
 put target= NOTCNTRL1= NOTCNTRL2= ;
 put target= NOTDIGIT1= NOTDIGIT2= ;
 put target= NOTFIRST1= NOTFIRST2= ;
 put target= NOTGRAPH1= NOTGRAPH2= ;
 put target= NOTLOWER1= NOTLOWER2= ;
 put target= NOTNAME1= NOTNAME2= ;
 put target= NOTPRINT1= NOTPRINT2= ;
 put target= NOTPUNCT1= NOTPUNCT2= ;
 put target= NOTSPACE1= NOTSPACE2= ;
 put target= NOTUPPER1= NOTUPPER2= ;
run;
83
1
þ���252
3
notlower(

1
332
1
130
/*anyAlpha(string <, start >)
 Searches a character string for an alphabetic character,
 and returns the first position at which the character is found.
AnyDigit Searches a character string for a digit, and returns the first position at which the digit is found.
AnyName Searches a character string for a character that is valid in a SAS variable name under VALIDVARNAME=V7,
 and returns the first position at which that character is found.
AnyPunct Searches a character string for a punctuation character,
 and returns the first position at which that character is found.
AnySpace Searches a character string for:
 a white-space character (blank, horizontal and vertical tab, carriage return, line feed,
 and form feed),
 and returns the first position at which that character is found.	
AnyUpper Searches a character string for an uppercase letter,
 and returns the first position at which the letter is found. 	
AnyLower Searches a character string for a lowercase letter,
 and returns the first position at which the letter is found. 	

INDEX 	 Searches a character expression for a string of characters,
		 and returns the position of the string's first character for the first occurrence of the string.
INDEXC Searches a character expression for any of the specified characters,
 and returns the position of that character.
INDEXW Searches a character expression for a string that is specified as a word,
 and returns the position of the first character in the word.

NOTALNUM Searches a character string for a non-alphanumeric character,
 and returns the first position at which the character is found.
NOTALPHA Searches a character string for a nonalphabetic character,
 and returns the first position at which the character is found.
NOTCNTRL Searches a character string for a character that is not a control character,
 and returns the first position at which that character is found.
NOTDIGIT Searches a character string for any character that is not a digit,
 and returns the first position at which that character is found.
NOTFIRST Searches a character string for an invalid first character
 in a SAS variable name under VALIDVARNAME=V7, and returns the first position at which that character is found.
NOTGRAPH Searches a character string for a non-graphical character,
 and returns the first position at which that character is found.
NOTLOWER Searches a character string for a character that is not a lowercase letter,
 and returns the first position at which that character is found.
NOTNAME Searches a character string for an invalid character
 in a SAS variable name under VALIDVARNAME=V7,
 and returns the first position at which that character is found.
NOTPRINT Searches a character string for a nonprintable character,
 and returns the first position at which that character is found.
NOTPUNCT Searches a character string for a character that is not
 a punctuation character, and returns the first position at which that character is found.
NOTSPACE Searches a character string for a character that is not a white-space
 character (blank, horizontal and vertical tab, carriage return, line feed,
 and form feed), and returns the first position at which that character is found.
NOTUPPER Searches a character string for a character that is not an uppercase letter,
 and returns the first position at which that character is found.
NOTXDIGIT Searches a character string for a character that is not a hexadecimal character,
 and returns the first position at which that character is found.

*/
 data _null_;
 target="123!c5 D9_;91234567890";
 AnyAlpha1=AnyAlpha(target);
 AnyAlpha2=AnyAlpha(target,5);
 AnyAlpha3=AnyAlpha(target,-1);

 AnyDigit1=AnyDigit(target);
 AnyDigit2=AnyDigit(target,5);
 AnyDigit3=AnyDigit(target,-1);

 ANYPUNCT1=AnyPunct(target);
 ANYPUNCT2=AnyPunct(target,13);

 ANYUPPER1=AnyUpper(target);
 ANYUPPER2=AnyUpper(target,13);

 AnyLower1=AnyLower(target);
 AnyLower2=AnyLower(target,13);

 NOTALNUM1=NOTALNUM(target);
 NOTALNUM2=NOTALNUM(target);

 NOTALPHA1 =NOTALPHA(target);
 NOTALPHA2 =NOTALPHA(target,8);

 NOTCNTRL1 =NOTCNTRL(target);
 NOTCNTRL2 =NOTCNTRL(target,8);

 NOTDIGIT1 =NOTDIGIT(target);
 NOTDIGIT2 =NOTDIGIT(target,8);

 NOTFIRST1 =NOTFIRST(target);
 NOTFIRST2 =NOTFIRST(target,8);

 NOTGRAPH1 =NOTGRAPH(target);
 NOTGRAPH2 =NOTGRAPH(target,8);

 NOTLOWER1 =NOTLOWER(target);
 NOTLOWER2 =NOTLOWER(target,8);

 NOTNAME1 =NOTNAME(target);
 NOTNAME2 =NOTNAME(target,8);

 NOTPRINT1 =NOTPRINT(target);
 NOTPRINT2 =NOTPRINT(target,8);

 NOTPUNCT1 =NOTPUNCT(target);
 NOTPUNCT2 =NOTPUNCT(target,8);

 NOTSPACE1 =NOTSPACE(target);
 NOTSPACE2 =NOTSPACE(target,8);

 NOTUPPER1 =NOTUPPER(target);
 NOTUPPER2 =NOTUPPER(target,8);
/* NOTXDIGIT Function*/
 put target= AnyAlpha1= AnyAlpha2= AnyAlpha3=;
 put target= AnyDigit1= AnyDigit2= AnyDigit3=;
 put target= ANYPUNCT1= ANYPUNCT2= ;
 put target= ANYUpper1= ANYUpper2= ;
 put target= ANYLower1= ANYLower2= ;
 put target= NOTALNUM1= NOTALNUM2= ;
 put target= NOTALPHA1= NOTALPHA2= ;
 put target= NOTCNTRL1= NOTCNTRL2= ;
 put target= NOTDIGIT1= NOTDIGIT2= ;
 put target= NOTFIRST1= NOTFIRST2= ;
 put target= NOTGRAPH1= NOTGRAPH2= ;
 put target= NOTLOWER1= NOTLOWER2= ;
 put target= NOTNAME1= NOTNAME2= ;
 put target= NOTPRINT1= NOTPRINT2= ;
 put target= NOTPUNCT1= NOTPUNCT2= ;
 put target= NOTSPACE1= NOTSPACE2= ;
 put target= NOTUPPER1= NOTUPPER2= ;
run;
84
1
ý���252
3
notname(

1
332
1
130
/*anyAlpha(string <, start >)
 Searches a character string for an alphabetic character,
 and returns the first position at which the character is found.
AnyDigit Searches a character string for a digit, and returns the first position at which the digit is found.
AnyName Searches a character string for a character that is valid in a SAS variable name under VALIDVARNAME=V7,
 and returns the first position at which that character is found.
AnyPunct Searches a character string for a punctuation character,
 and returns the first position at which that character is found.
AnySpace Searches a character string for:
 a white-space character (blank, horizontal and vertical tab, carriage return, line feed,
 and form feed),
 and returns the first position at which that character is found.	
AnyUpper Searches a character string for an uppercase letter,
 and returns the first position at which the letter is found. 	
AnyLower Searches a character string for a lowercase letter,
 and returns the first position at which the letter is found. 	

INDEX 	 Searches a character expression for a string of characters,
		 and returns the position of the string's first character for the first occurrence of the string.
INDEXC Searches a character expression for any of the specified characters,
 and returns the position of that character.
INDEXW Searches a character expression for a string that is specified as a word,
 and returns the position of the first character in the word.

NOTALNUM Searches a character string for a non-alphanumeric character,
 and returns the first position at which the character is found.
NOTALPHA Searches a character string for a nonalphabetic character,
 and returns the first position at which the character is found.
NOTCNTRL Searches a character string for a character that is not a control character,
 and returns the first position at which that character is found.
NOTDIGIT Searches a character string for any character that is not a digit,
 and returns the first position at which that character is found.
NOTFIRST Searches a character string for an invalid first character
 in a SAS variable name under VALIDVARNAME=V7, and returns the first position at which that character is found.
NOTGRAPH Searches a character string for a non-graphical character,
 and returns the first position at which that character is found.
NOTLOWER Searches a character string for a character that is not a lowercase letter,
 and returns the first position at which that character is found.
NOTNAME Searches a character string for an invalid character
 in a SAS variable name under VALIDVARNAME=V7,
 and returns the first position at which that character is found.
NOTPRINT Searches a character string for a nonprintable character,
 and returns the first position at which that character is found.
NOTPUNCT Searches a character string for a character that is not
 a punctuation character, and returns the first position at which that character is found.
NOTSPACE Searches a character string for a character that is not a white-space
 character (blank, horizontal and vertical tab, carriage return, line feed,
 and form feed), and returns the first position at which that character is found.
NOTUPPER Searches a character string for a character that is not an uppercase letter,
 and returns the first position at which that character is found.
NOTXDIGIT Searches a character string for a character that is not a hexadecimal character,
 and returns the first position at which that character is found.

*/
 data _null_;
 target="123!c5 D9_;91234567890";
 AnyAlpha1=AnyAlpha(target);
 AnyAlpha2=AnyAlpha(target,5);
 AnyAlpha3=AnyAlpha(target,-1);

 AnyDigit1=AnyDigit(target);
 AnyDigit2=AnyDigit(target,5);
 AnyDigit3=AnyDigit(target,-1);

 ANYPUNCT1=AnyPunct(target);
 ANYPUNCT2=AnyPunct(target,13);

 ANYUPPER1=AnyUpper(target);
 ANYUPPER2=AnyUpper(target,13);

 AnyLower1=AnyLower(target);
 AnyLower2=AnyLower(target,13);

 NOTALNUM1=NOTALNUM(target);
 NOTALNUM2=NOTALNUM(target);

 NOTALPHA1 =NOTALPHA(target);
 NOTALPHA2 =NOTALPHA(target,8);

 NOTCNTRL1 =NOTCNTRL(target);
 NOTCNTRL2 =NOTCNTRL(target,8);

 NOTDIGIT1 =NOTDIGIT(target);
 NOTDIGIT2 =NOTDIGIT(target,8);

 NOTFIRST1 =NOTFIRST(target);
 NOTFIRST2 =NOTFIRST(target,8);

 NOTGRAPH1 =NOTGRAPH(target);
 NOTGRAPH2 =NOTGRAPH(target,8);

 NOTLOWER1 =NOTLOWER(target);
 NOTLOWER2 =NOTLOWER(target,8);

 NOTNAME1 =NOTNAME(target);
 NOTNAME2 =NOTNAME(target,8);

 NOTPRINT1 =NOTPRINT(target);
 NOTPRINT2 =NOTPRINT(target,8);

 NOTPUNCT1 =NOTPUNCT(target);
 NOTPUNCT2 =NOTPUNCT(target,8);

 NOTSPACE1 =NOTSPACE(target);
 NOTSPACE2 =NOTSPACE(target,8);

 NOTUPPER1 =NOTUPPER(target);
 NOTUPPER2 =NOTUPPER(target,8);
/* NOTXDIGIT Function*/
 put target= AnyAlpha1= AnyAlpha2= AnyAlpha3=;
 put target= AnyDigit1= AnyDigit2= AnyDigit3=;
 put target= ANYPUNCT1= ANYPUNCT2= ;
 put target= ANYUpper1= ANYUpper2= ;
 put target= ANYLower1= ANYLower2= ;
 put target= NOTALNUM1= NOTALNUM2= ;
 put target= NOTALPHA1= NOTALPHA2= ;
 put target= NOTCNTRL1= NOTCNTRL2= ;
 put target= NOTDIGIT1= NOTDIGIT2= ;
 put target= NOTFIRST1= NOTFIRST2= ;
 put target= NOTGRAPH1= NOTGRAPH2= ;
 put target= NOTLOWER1= NOTLOWER2= ;
 put target= NOTNAME1= NOTNAME2= ;
 put target= NOTPRINT1= NOTPRINT2= ;
 put target= NOTPUNCT1= NOTPUNCT2= ;
 put target= NOTSPACE1= NOTSPACE2= ;
 put target= NOTUPPER1= NOTUPPER2= ;
run;
85
1
þ���252
3
notprint(

1
332
1
130
/*anyAlpha(string <, start >)
 Searches a character string for an alphabetic character,
 and returns the first position at which the character is found.
AnyDigit Searches a character string for a digit, and returns the first position at which the digit is found.
AnyName Searches a character string for a character that is valid in a SAS variable name under VALIDVARNAME=V7,
 and returns the first position at which that character is found.
AnyPunct Searches a character string for a punctuation character,
 and returns the first position at which that character is found.
AnySpace Searches a character string for:
 a white-space character (blank, horizontal and vertical tab, carriage return, line feed,
 and form feed),
 and returns the first position at which that character is found.	
AnyUpper Searches a character string for an uppercase letter,
 and returns the first position at which the letter is found. 	
AnyLower Searches a character string for a lowercase letter,
 and returns the first position at which the letter is found. 	

INDEX 	 Searches a character expression for a string of characters,
		 and returns the position of the string's first character for the first occurrence of the string.
INDEXC Searches a character expression for any of the specified characters,
 and returns the position of that character.
INDEXW Searches a character expression for a string that is specified as a word,
 and returns the position of the first character in the word.

NOTALNUM Searches a character string for a non-alphanumeric character,
 and returns the first position at which the character is found.
NOTALPHA Searches a character string for a nonalphabetic character,
 and returns the first position at which the character is found.
NOTCNTRL Searches a character string for a character that is not a control character,
 and returns the first position at which that character is found.
NOTDIGIT Searches a character string for any character that is not a digit,
 and returns the first position at which that character is found.
NOTFIRST Searches a character string for an invalid first character
 in a SAS variable name under VALIDVARNAME=V7, and returns the first position at which that character is found.
NOTGRAPH Searches a character string for a non-graphical character,
 and returns the first position at which that character is found.
NOTLOWER Searches a character string for a character that is not a lowercase letter,
 and returns the first position at which that character is found.
NOTNAME Searches a character string for an invalid character
 in a SAS variable name under VALIDVARNAME=V7,
 and returns the first position at which that character is found.
NOTPRINT Searches a character string for a nonprintable character,
 and returns the first position at which that character is found.
NOTPUNCT Searches a character string for a character that is not
 a punctuation character, and returns the first position at which that character is found.
NOTSPACE Searches a character string for a character that is not a white-space
 character (blank, horizontal and vertical tab, carriage return, line feed,
 and form feed), and returns the first position at which that character is found.
NOTUPPER Searches a character string for a character that is not an uppercase letter,
 and returns the first position at which that character is found.
NOTXDIGIT Searches a character string for a character that is not a hexadecimal character,
 and returns the first position at which that character is found.

*/
 data _null_;
 target="123!c5 D9_;91234567890";
 AnyAlpha1=AnyAlpha(target);
 AnyAlpha2=AnyAlpha(target,5);
 AnyAlpha3=AnyAlpha(target,-1);

 AnyDigit1=AnyDigit(target);
 AnyDigit2=AnyDigit(target,5);
 AnyDigit3=AnyDigit(target,-1);

 ANYPUNCT1=AnyPunct(target);
 ANYPUNCT2=AnyPunct(target,13);

 ANYUPPER1=AnyUpper(target);
 ANYUPPER2=AnyUpper(target,13);

 AnyLower1=AnyLower(target);
 AnyLower2=AnyLower(target,13);

 NOTALNUM1=NOTALNUM(target);
 NOTALNUM2=NOTALNUM(target);

 NOTALPHA1 =NOTALPHA(target);
 NOTALPHA2 =NOTALPHA(target,8);

 NOTCNTRL1 =NOTCNTRL(target);
 NOTCNTRL2 =NOTCNTRL(target,8);

 NOTDIGIT1 =NOTDIGIT(target);
 NOTDIGIT2 =NOTDIGIT(target,8);

 NOTFIRST1 =NOTFIRST(target);
 NOTFIRST2 =NOTFIRST(target,8);

 NOTGRAPH1 =NOTGRAPH(target);
 NOTGRAPH2 =NOTGRAPH(target,8);

 NOTLOWER1 =NOTLOWER(target);
 NOTLOWER2 =NOTLOWER(target,8);

 NOTNAME1 =NOTNAME(target);
 NOTNAME2 =NOTNAME(target,8);

 NOTPRINT1 =NOTPRINT(target);
 NOTPRINT2 =NOTPRINT(target,8);

 NOTPUNCT1 =NOTPUNCT(target);
 NOTPUNCT2 =NOTPUNCT(target,8);

 NOTSPACE1 =NOTSPACE(target);
 NOTSPACE2 =NOTSPACE(target,8);

 NOTUPPER1 =NOTUPPER(target);
 NOTUPPER2 =NOTUPPER(target,8);
/* NOTXDIGIT Function*/
 put target= AnyAlpha1= AnyAlpha2= AnyAlpha3=;
 put target= AnyDigit1= AnyDigit2= AnyDigit3=;
 put target= ANYPUNCT1= ANYPUNCT2= ;
 put target= ANYUpper1= ANYUpper2= ;
 put target= ANYLower1= ANYLower2= ;
 put target= NOTALNUM1= NOTALNUM2= ;
 put target= NOTALPHA1= NOTALPHA2= ;
 put target= NOTCNTRL1= NOTCNTRL2= ;
 put target= NOTDIGIT1= NOTDIGIT2= ;
 put target= NOTFIRST1= NOTFIRST2= ;
 put target= NOTGRAPH1= NOTGRAPH2= ;
 put target= NOTLOWER1= NOTLOWER2= ;
 put target= NOTNAME1= NOTNAME2= ;
 put target= NOTPRINT1= NOTPRINT2= ;
 put target= NOTPUNCT1= NOTPUNCT2= ;
 put target= NOTSPACE1= NOTSPACE2= ;
 put target= NOTUPPER1= NOTUPPER2= ;
run;
86
1
þ���252
3
notpunct(

1
332
1
130
/*anyAlpha(string <, start >)
 Searches a character string for an alphabetic character,
 and returns the first position at which the character is found.
AnyDigit Searches a character string for a digit, and returns the first position at which the digit is found.
AnyName Searches a character string for a character that is valid in a SAS variable name under VALIDVARNAME=V7,
 and returns the first position at which that character is found.
AnyPunct Searches a character string for a punctuation character,
 and returns the first position at which that character is found.
AnySpace Searches a character string for:
 a white-space character (blank, horizontal and vertical tab, carriage return, line feed,
 and form feed),
 and returns the first position at which that character is found.	
AnyUpper Searches a character string for an uppercase letter,
 and returns the first position at which the letter is found. 	
AnyLower Searches a character string for a lowercase letter,
 and returns the first position at which the letter is found. 	

INDEX 	 Searches a character expression for a string of characters,
		 and returns the position of the string's first character for the first occurrence of the string.
INDEXC Searches a character expression for any of the specified characters,
 and returns the position of that character.
INDEXW Searches a character expression for a string that is specified as a word,
 and returns the position of the first character in the word.

NOTALNUM Searches a character string for a non-alphanumeric character,
 and returns the first position at which the character is found.
NOTALPHA Searches a character string for a nonalphabetic character,
 and returns the first position at which the character is found.
NOTCNTRL Searches a character string for a character that is not a control character,
 and returns the first position at which that character is found.
NOTDIGIT Searches a character string for any character that is not a digit,
 and returns the first position at which that character is found.
NOTFIRST Searches a character string for an invalid first character
 in a SAS variable name under VALIDVARNAME=V7, and returns the first position at which that character is found.
NOTGRAPH Searches a character string for a non-graphical character,
 and returns the first position at which that character is found.
NOTLOWER Searches a character string for a character that is not a lowercase letter,
 and returns the first position at which that character is found.
NOTNAME Searches a character string for an invalid character
 in a SAS variable name under VALIDVARNAME=V7,
 and returns the first position at which that character is found.
NOTPRINT Searches a character string for a nonprintable character,
 and returns the first position at which that character is found.
NOTPUNCT Searches a character string for a character that is not
 a punctuation character, and returns the first position at which that character is found.
NOTSPACE Searches a character string for a character that is not a white-space
 character (blank, horizontal and vertical tab, carriage return, line feed,
 and form feed), and returns the first position at which that character is found.
NOTUPPER Searches a character string for a character that is not an uppercase letter,
 and returns the first position at which that character is found.
NOTXDIGIT Searches a character string for a character that is not a hexadecimal character,
 and returns the first position at which that character is found.

*/
 data _null_;
 target="123!c5 D9_;91234567890";
 AnyAlpha1=AnyAlpha(target);
 AnyAlpha2=AnyAlpha(target,5);
 AnyAlpha3=AnyAlpha(target,-1);

 AnyDigit1=AnyDigit(target);
 AnyDigit2=AnyDigit(target,5);
 AnyDigit3=AnyDigit(target,-1);

 ANYPUNCT1=AnyPunct(target);
 ANYPUNCT2=AnyPunct(target,13);

 ANYUPPER1=AnyUpper(target);
 ANYUPPER2=AnyUpper(target,13);

 AnyLower1=AnyLower(target);
 AnyLower2=AnyLower(target,13);

 NOTALNUM1=NOTALNUM(target);
 NOTALNUM2=NOTALNUM(target);

 NOTALPHA1 =NOTALPHA(target);
 NOTALPHA2 =NOTALPHA(target,8);

 NOTCNTRL1 =NOTCNTRL(target);
 NOTCNTRL2 =NOTCNTRL(target,8);

 NOTDIGIT1 =NOTDIGIT(target);
 NOTDIGIT2 =NOTDIGIT(target,8);

 NOTFIRST1 =NOTFIRST(target);
 NOTFIRST2 =NOTFIRST(target,8);

 NOTGRAPH1 =NOTGRAPH(target);
 NOTGRAPH2 =NOTGRAPH(target,8);

 NOTLOWER1 =NOTLOWER(target);
 NOTLOWER2 =NOTLOWER(target,8);

 NOTNAME1 =NOTNAME(target);
 NOTNAME2 =NOTNAME(target,8);

 NOTPRINT1 =NOTPRINT(target);
 NOTPRINT2 =NOTPRINT(target,8);

 NOTPUNCT1 =NOTPUNCT(target);
 NOTPUNCT2 =NOTPUNCT(target,8);

 NOTSPACE1 =NOTSPACE(target);
 NOTSPACE2 =NOTSPACE(target,8);

 NOTUPPER1 =NOTUPPER(target);
 NOTUPPER2 =NOTUPPER(target,8);
/* NOTXDIGIT Function*/
 put target= AnyAlpha1= AnyAlpha2= AnyAlpha3=;
 put target= AnyDigit1= AnyDigit2= AnyDigit3=;
 put target= ANYPUNCT1= ANYPUNCT2= ;
 put target= ANYUpper1= ANYUpper2= ;
 put target= ANYLower1= ANYLower2= ;
 put target= NOTALNUM1= NOTALNUM2= ;
 put target= NOTALPHA1= NOTALPHA2= ;
 put target= NOTCNTRL1= NOTCNTRL2= ;
 put target= NOTDIGIT1= NOTDIGIT2= ;
 put target= NOTFIRST1= NOTFIRST2= ;
 put target= NOTGRAPH1= NOTGRAPH2= ;
 put target= NOTLOWER1= NOTLOWER2= ;
 put target= NOTNAME1= NOTNAME2= ;
 put target= NOTPRINT1= NOTPRINT2= ;
 put target= NOTPUNCT1= NOTPUNCT2= ;
 put target= NOTSPACE1= NOTSPACE2= ;
 put target= NOTUPPER1= NOTUPPER2= ;
run;
87
1
þ���252
3
notspace(

1
332
1
130
/*anyAlpha(string <, start >)
 Searches a character string for an alphabetic character,
 and returns the first position at which the character is found.
AnyDigit Searches a character string for a digit, and returns the first position at which the digit is found.
AnyName Searches a character string for a character that is valid in a SAS variable name under VALIDVARNAME=V7,
 and returns the first position at which that character is found.
AnyPunct Searches a character string for a punctuation character,
 and returns the first position at which that character is found.
AnySpace Searches a character string for:
 a white-space character (blank, horizontal and vertical tab, carriage return, line feed,
 and form feed),
 and returns the first position at which that character is found.	
AnyUpper Searches a character string for an uppercase letter,
 and returns the first position at which the letter is found. 	
AnyLower Searches a character string for a lowercase letter,
 and returns the first position at which the letter is found. 	

INDEX 	 Searches a character expression for a string of characters,
		 and returns the position of the string's first character for the first occurrence of the string.
INDEXC Searches a character expression for any of the specified characters,
 and returns the position of that character.
INDEXW Searches a character expression for a string that is specified as a word,
 and returns the position of the first character in the word.

NOTALNUM Searches a character string for a non-alphanumeric character,
 and returns the first position at which the character is found.
NOTALPHA Searches a character string for a nonalphabetic character,
 and returns the first position at which the character is found.
NOTCNTRL Searches a character string for a character that is not a control character,
 and returns the first position at which that character is found.
NOTDIGIT Searches a character string for any character that is not a digit,
 and returns the first position at which that character is found.
NOTFIRST Searches a character string for an invalid first character
 in a SAS variable name under VALIDVARNAME=V7, and returns the first position at which that character is found.
NOTGRAPH Searches a character string for a non-graphical character,
 and returns the first position at which that character is found.
NOTLOWER Searches a character string for a character that is not a lowercase letter,
 and returns the first position at which that character is found.
NOTNAME Searches a character string for an invalid character
 in a SAS variable name under VALIDVARNAME=V7,
 and returns the first position at which that character is found.
NOTPRINT Searches a character string for a nonprintable character,
 and returns the first position at which that character is found.
NOTPUNCT Searches a character string for a character that is not
 a punctuation character, and returns the first position at which that character is found.
NOTSPACE Searches a character string for a character that is not a white-space
 character (blank, horizontal and vertical tab, carriage return, line feed,
 and form feed), and returns the first position at which that character is found.
NOTUPPER Searches a character string for a character that is not an uppercase letter,
 and returns the first position at which that character is found.
NOTXDIGIT Searches a character string for a character that is not a hexadecimal character,
 and returns the first position at which that character is found.

*/
 data _null_;
 target="123!c5 D9_;91234567890";
 AnyAlpha1=AnyAlpha(target);
 AnyAlpha2=AnyAlpha(target,5);
 AnyAlpha3=AnyAlpha(target,-1);

 AnyDigit1=AnyDigit(target);
 AnyDigit2=AnyDigit(target,5);
 AnyDigit3=AnyDigit(target,-1);

 ANYPUNCT1=AnyPunct(target);
 ANYPUNCT2=AnyPunct(target,13);

 ANYUPPER1=AnyUpper(target);
 ANYUPPER2=AnyUpper(target,13);

 AnyLower1=AnyLower(target);
 AnyLower2=AnyLower(target,13);

 NOTALNUM1=NOTALNUM(target);
 NOTALNUM2=NOTALNUM(target);

 NOTALPHA1 =NOTALPHA(target);
 NOTALPHA2 =NOTALPHA(target,8);

 NOTCNTRL1 =NOTCNTRL(target);
 NOTCNTRL2 =NOTCNTRL(target,8);

 NOTDIGIT1 =NOTDIGIT(target);
 NOTDIGIT2 =NOTDIGIT(target,8);

 NOTFIRST1 =NOTFIRST(target);
 NOTFIRST2 =NOTFIRST(target,8);

 NOTGRAPH1 =NOTGRAPH(target);
 NOTGRAPH2 =NOTGRAPH(target,8);

 NOTLOWER1 =NOTLOWER(target);
 NOTLOWER2 =NOTLOWER(target,8);

 NOTNAME1 =NOTNAME(target);
 NOTNAME2 =NOTNAME(target,8);

 NOTPRINT1 =NOTPRINT(target);
 NOTPRINT2 =NOTPRINT(target,8);

 NOTPUNCT1 =NOTPUNCT(target);
 NOTPUNCT2 =NOTPUNCT(target,8);

 NOTSPACE1 =NOTSPACE(target);
 NOTSPACE2 =NOTSPACE(target,8);

 NOTUPPER1 =NOTUPPER(target);
 NOTUPPER2 =NOTUPPER(target,8);
/* NOTXDIGIT Function*/
 put target= AnyAlpha1= AnyAlpha2= AnyAlpha3=;
 put target= AnyDigit1= AnyDigit2= AnyDigit3=;
 put target= ANYPUNCT1= ANYPUNCT2= ;
 put target= ANYUpper1= ANYUpper2= ;
 put target= ANYLower1= ANYLower2= ;
 put target= NOTALNUM1= NOTALNUM2= ;
 put target= NOTALPHA1= NOTALPHA2= ;
 put target= NOTCNTRL1= NOTCNTRL2= ;
 put target= NOTDIGIT1= NOTDIGIT2= ;
 put target= NOTFIRST1= NOTFIRST2= ;
 put target= NOTGRAPH1= NOTGRAPH2= ;
 put target= NOTLOWER1= NOTLOWER2= ;
 put target= NOTNAME1= NOTNAME2= ;
 put target= NOTPRINT1= NOTPRINT2= ;
 put target= NOTPUNCT1= NOTPUNCT2= ;
 put target= NOTSPACE1= NOTSPACE2= ;
 put target= NOTUPPER1= NOTUPPER2= ;
run;
88
1
þ���252
3
notupper(

1
332
1
130
/*anyAlpha(string <, start >)
 Searches a character string for an alphabetic character,
 and returns the first position at which the character is found.
AnyDigit Searches a character string for a digit, and returns the first position at which the digit is found.
AnyName Searches a character string for a character that is valid in a SAS variable name under VALIDVARNAME=V7,
 and returns the first position at which that character is found.
AnyPunct Searches a character string for a punctuation character,
 and returns the first position at which that character is found.
AnySpace Searches a character string for:
 a white-space character (blank, horizontal and vertical tab, carriage return, line feed,
 and form feed),
 and returns the first position at which that character is found.	
AnyUpper Searches a character string for an uppercase letter,
 and returns the first position at which the letter is found. 	
AnyLower Searches a character string for a lowercase letter,
 and returns the first position at which the letter is found. 	

INDEX 	 Searches a character expression for a string of characters,
		 and returns the position of the string's first character for the first occurrence of the string.
INDEXC Searches a character expression for any of the specified characters,
 and returns the position of that character.
INDEXW Searches a character expression for a string that is specified as a word,
 and returns the position of the first character in the word.

NOTALNUM Searches a character string for a non-alphanumeric character,
 and returns the first position at which the character is found.
NOTALPHA Searches a character string for a nonalphabetic character,
 and returns the first position at which the character is found.
NOTCNTRL Searches a character string for a character that is not a control character,
 and returns the first position at which that character is found.
NOTDIGIT Searches a character string for any character that is not a digit,
 and returns the first position at which that character is found.
NOTFIRST Searches a character string for an invalid first character
 in a SAS variable name under VALIDVARNAME=V7, and returns the first position at which that character is found.
NOTGRAPH Searches a character string for a non-graphical character,
 and returns the first position at which that character is found.
NOTLOWER Searches a character string for a character that is not a lowercase letter,
 and returns the first position at which that character is found.
NOTNAME Searches a character string for an invalid character
 in a SAS variable name under VALIDVARNAME=V7,
 and returns the first position at which that character is found.
NOTPRINT Searches a character string for a nonprintable character,
 and returns the first position at which that character is found.
NOTPUNCT Searches a character string for a character that is not
 a punctuation character, and returns the first position at which that character is found.
NOTSPACE Searches a character string for a character that is not a white-space
 character (blank, horizontal and vertical tab, carriage return, line feed,
 and form feed), and returns the first position at which that character is found.
NOTUPPER Searches a character string for a character that is not an uppercase letter,
 and returns the first position at which that character is found.
NOTXDIGIT Searches a character string for a character that is not a hexadecimal character,
 and returns the first position at which that character is found.

*/
 data _null_;
 target="123!c5 D9_;91234567890";
 AnyAlpha1=AnyAlpha(target);
 AnyAlpha2=AnyAlpha(target,5);
 AnyAlpha3=AnyAlpha(target,-1);

 AnyDigit1=AnyDigit(target);
 AnyDigit2=AnyDigit(target,5);
 AnyDigit3=AnyDigit(target,-1);

 ANYPUNCT1=AnyPunct(target);
 ANYPUNCT2=AnyPunct(target,13);

 ANYUPPER1=AnyUpper(target);
 ANYUPPER2=AnyUpper(target,13);

 AnyLower1=AnyLower(target);
 AnyLower2=AnyLower(target,13);

 NOTALNUM1=NOTALNUM(target);
 NOTALNUM2=NOTALNUM(target);

 NOTALPHA1 =NOTALPHA(target);
 NOTALPHA2 =NOTALPHA(target,8);

 NOTCNTRL1 =NOTCNTRL(target);
 NOTCNTRL2 =NOTCNTRL(target,8);

 NOTDIGIT1 =NOTDIGIT(target);
 NOTDIGIT2 =NOTDIGIT(target,8);

 NOTFIRST1 =NOTFIRST(target);
 NOTFIRST2 =NOTFIRST(target,8);

 NOTGRAPH1 =NOTGRAPH(target);
 NOTGRAPH2 =NOTGRAPH(target,8);

 NOTLOWER1 =NOTLOWER(target);
 NOTLOWER2 =NOTLOWER(target,8);

 NOTNAME1 =NOTNAME(target);
 NOTNAME2 =NOTNAME(target,8);

 NOTPRINT1 =NOTPRINT(target);
 NOTPRINT2 =NOTPRINT(target,8);

 NOTPUNCT1 =NOTPUNCT(target);
 NOTPUNCT2 =NOTPUNCT(target,8);

 NOTSPACE1 =NOTSPACE(target);
 NOTSPACE2 =NOTSPACE(target,8);

 NOTUPPER1 =NOTUPPER(target);
 NOTUPPER2 =NOTUPPER(target,8);
/* NOTXDIGIT Function*/
 put target= AnyAlpha1= AnyAlpha2= AnyAlpha3=;
 put target= AnyDigit1= AnyDigit2= AnyDigit3=;
 put target= ANYPUNCT1= ANYPUNCT2= ;
 put target= ANYUpper1= ANYUpper2= ;
 put target= ANYLower1= ANYLower2= ;
 put target= NOTALNUM1= NOTALNUM2= ;
 put target= NOTALPHA1= NOTALPHA2= ;
 put target= NOTCNTRL1= NOTCNTRL2= ;
 put target= NOTDIGIT1= NOTDIGIT2= ;
 put target= NOTFIRST1= NOTFIRST2= ;
 put target= NOTGRAPH1= NOTGRAPH2= ;
 put target= NOTLOWER1= NOTLOWER2= ;
 put target= NOTNAME1= NOTNAME2= ;
 put target= NOTPRINT1= NOTPRINT2= ;
 put target= NOTPUNCT1= NOTPUNCT2= ;
 put target= NOTSPACE1= NOTSPACE2= ;
 put target= NOTUPPER1= NOTUPPER2= ;
run;
89
1
þ���252
3
notxdigit(

1
332
1
130
/*anyAlpha(string <, start >)
 Searches a character string for an alphabetic character,
 and returns the first position at which the character is found.
AnyDigit Searches a character string for a digit, and returns the first position at which the digit is found.
AnyName Searches a character string for a character that is valid in a SAS variable name under VALIDVARNAME=V7,
 and returns the first position at which that character is found.
AnyPunct Searches a character string for a punctuation character,
 and returns the first position at which that character is found.
AnySpace Searches a character string for:
 a white-space character (blank, horizontal and vertical tab, carriage return, line feed,
 and form feed),
 and returns the first position at which that character is found.	
AnyUpper Searches a character string for an uppercase letter,
 and returns the first position at which the letter is found. 	
AnyLower Searches a character string for a lowercase letter,
 and returns the first position at which the letter is found. 	

INDEX 	 Searches a character expression for a string of characters,
		 and returns the position of the string's first character for the first occurrence of the string.
INDEXC Searches a character expression for any of the specified characters,
 and returns the position of that character.
INDEXW Searches a character expression for a string that is specified as a word,
 and returns the position of the first character in the word.

NOTALNUM Searches a character string for a non-alphanumeric character,
 and returns the first position at which the character is found.
NOTALPHA Searches a character string for a nonalphabetic character,
 and returns the first position at which the character is found.
NOTCNTRL Searches a character string for a character that is not a control character,
 and returns the first position at which that character is found.
NOTDIGIT Searches a character string for any character that is not a digit,
 and returns the first position at which that character is found.
NOTFIRST Searches a character string for an invalid first character
 in a SAS variable name under VALIDVARNAME=V7, and returns the first position at which that character is found.
NOTGRAPH Searches a character string for a non-graphical character,
 and returns the first position at which that character is found.
NOTLOWER Searches a character string for a character that is not a lowercase letter,
 and returns the first position at which that character is found.
NOTNAME Searches a character string for an invalid character
 in a SAS variable name under VALIDVARNAME=V7,
 and returns the first position at which that character is found.
NOTPRINT Searches a character string for a nonprintable character,
 and returns the first position at which that character is found.
NOTPUNCT Searches a character string for a character that is not
 a punctuation character, and returns the first position at which that character is found.
NOTSPACE Searches a character string for a character that is not a white-space
 character (blank, horizontal and vertical tab, carriage return, line feed,
 and form feed), and returns the first position at which that character is found.
NOTUPPER Searches a character string for a character that is not an uppercase letter,
 and returns the first position at which that character is found.
NOTXDIGIT Searches a character string for a character that is not a hexadecimal character,
 and returns the first position at which that character is found.

*/
 data _null_;
 target="123!c5 D9_;91234567890";
 AnyAlpha1=AnyAlpha(target);
 AnyAlpha2=AnyAlpha(target,5);
 AnyAlpha3=AnyAlpha(target,-1);

 AnyDigit1=AnyDigit(target);
 AnyDigit2=AnyDigit(target,5);
 AnyDigit3=AnyDigit(target,-1);

 ANYPUNCT1=AnyPunct(target);
 ANYPUNCT2=AnyPunct(target,13);

 ANYUPPER1=AnyUpper(target);
 ANYUPPER2=AnyUpper(target,13);

 AnyLower1=AnyLower(target);
 AnyLower2=AnyLower(target,13);

 NOTALNUM1=NOTALNUM(target);
 NOTALNUM2=NOTALNUM(target);

 NOTALPHA1 =NOTALPHA(target);
 NOTALPHA2 =NOTALPHA(target,8);

 NOTCNTRL1 =NOTCNTRL(target);
 NOTCNTRL2 =NOTCNTRL(target,8);

 NOTDIGIT1 =NOTDIGIT(target);
 NOTDIGIT2 =NOTDIGIT(target,8);

 NOTFIRST1 =NOTFIRST(target);
 NOTFIRST2 =NOTFIRST(target,8);

 NOTGRAPH1 =NOTGRAPH(target);
 NOTGRAPH2 =NOTGRAPH(target,8);

 NOTLOWER1 =NOTLOWER(target);
 NOTLOWER2 =NOTLOWER(target,8);

 NOTNAME1 =NOTNAME(target);
 NOTNAME2 =NOTNAME(target,8);

 NOTPRINT1 =NOTPRINT(target);
 NOTPRINT2 =NOTPRINT(target,8);

 NOTPUNCT1 =NOTPUNCT(target);
 NOTPUNCT2 =NOTPUNCT(target,8);

 NOTSPACE1 =NOTSPACE(target);
 NOTSPACE2 =NOTSPACE(target,8);

 NOTUPPER1 =NOTUPPER(target);
 NOTUPPER2 =NOTUPPER(target,8);
/* NOTXDIGIT Function*/
 put target= AnyAlpha1= AnyAlpha2= AnyAlpha3=;
 put target= AnyDigit1= AnyDigit2= AnyDigit3=;
 put target= ANYPUNCT1= ANYPUNCT2= ;
 put target= ANYUpper1= ANYUpper2= ;
 put target= ANYLower1= ANYLower2= ;
 put target= NOTALNUM1= NOTALNUM2= ;
 put target= NOTALPHA1= NOTALPHA2= ;
 put target= NOTCNTRL1= NOTCNTRL2= ;
 put target= NOTDIGIT1= NOTDIGIT2= ;
 put target= NOTFIRST1= NOTFIRST2= ;
 put target= NOTGRAPH1= NOTGRAPH2= ;
 put target= NOTLOWER1= NOTLOWER2= ;
 put target= NOTNAME1= NOTNAME2= ;
 put target= NOTPRINT1= NOTPRINT2= ;
 put target= NOTPUNCT1= NOTPUNCT2= ;
 put target= NOTSPACE1= NOTSPACE2= ;
 put target= NOTUPPER1= NOTUPPER2= ;
run;
9
1
=���252
3
NumFormatLookup

1
332
1
44
data small;
infile datalines;
input pat_id;
datalines;
23116
12554
;
run;
data large;
infile datalines;
input pat_id state $ zip $;
datalines;
12554 PA 19003
11121 NJ 08554
44444 MD 21332
23116 MA 62231
99332 PA 19104
33333 DE 21443
;
run;

data New_Fmt(keep= fmtname start label type hlo);
retain FMTNAME "N_Fltr" TYPE "n" LABEL "YES ";
set small (rename=(pat_id=start)) end=last;
output;
if last=1 then do;
	Hlo="O"; label="Other" ;
	start= .;
	output;
end;
run;
proc format cntlin= New_Fmt; run;
/*See the format internal file
proc format cntlout= look; run;
proc print data=look;
title "note that the data is now in ascending order";
run;
*/
DATA IN_SML_TOO;
SET large;
IF PUT(PAT_ID, N_Fltr.)="YES";
RUN;
proc print data=IN_Sml_too;
run;
367
1
£���252
3
nvalid(

1
332
1
24
/*NVALID Function Checks the validity of a character string for use as a SAS variable name. */
options validvarname=v7 ls=64;
data string;
 input string $char40.;
 v7=nvalid(string,'v7');
 any=nvalid(string,'any');
 nliteral=nvalid(string,'nliteral');
 default=nvalid(string);
 datalines;
Tooooooooooooooooooooooooooo Long

OK
Very_Long_But_Still_OK_for_V7
1st_char_is_a_digit
Embedded blank
!@#$%^&*
"Very Loooong N-Literal with """N
'No closing quotation mark
;

proc print noobs;
title1 'NLITERAL and Validvarname Arguments Determine';
title2 'Invalid (0) and Valid (1) SAS Variable Names';
run;
91
1
'���252
3
ods

1
332
1
144
/***
ODS example

tip sheet: http://support.sas.com/rnd/base/ods/scratch/ods-tips.pdf

Creating an Output Data Set from an ODS Table
http://www.technion.ac.il/docs/sas/stat/chap15/sect11.htm

Using SASÂ® ODS to extract and merge statistics from multiple SAS
procedures into a single summary report, a detailed methodology.
http://www2.sas.com/proceedings/sugi31/261-31.pdf

ODS and Output Data Sets: What You Need to Know
http://www2.sas.com/proceedings/forum2008/086-2008.pdf

ODS Output Object Table Names
http://support.sas.com/documentation/cdl/en/odsug/61723/HTML/default/viewer.htm#a002649072.htm

Managing Output in SAS 9.3
http://www.ssc.wisc.edu/sscc/pubs/sas_output.htm

Documentation: Introduction to the Output Delivery System (ODS)
http://support.sas.com/publishing/pubcat/chaps/58458.pdf

Documentation: SASÂ® 9.2 Output Delivery System Userâ€™s Guide
http://support.sas.com/documentation/cdl/en/odsug/61723/PDF/default/odsug.pdf

paper: http://www.wuss.org/proceedings09/09WUSSProceedings/papers/how/HOW-Lafler1.pdf
Paper: http://www.nesug.org/proceedings/nesug08/cc/cc02.pdf

tutorial:http://www.ats.ucla.edu/stat/sas/faq/odsexample.htm

tutorial: http://www.stattutorials.com/SAS/TUTORIAL-SAS-ODS.htm

tutorial: https://onlinecourses.science.psu.edu/stat481/node/81

***/
/* Creating SAS Data Sets from Procedure Output

You may need the results from a procedure to be put into into a SAS data set or macro variable.
Some PROCS have OUTPUT statements, or OUT= options, to create output files for selected output.
With ODS you can save almost any part of a PROC's output as a SAS table set
 by sending it to the OUTPUT destination.
 A) Use an ODS TRACE to determine the names of ODS output produced by the PROC
 B) Use an ODS OUTPUT to send that ODS object to the table.

Syntax is: ODS OUTPUT output-object = new-data-set;

Output-object is the name, label or path of the piece of output you want to save.
ODS OUTPUT opens a SAS data set and waits for the correct procedure output.
The data set remains open until the end of a PROC step is reached.
Because ODS OUTPUT executes immediately,
 it will apply to whatever PROC is currently being processed,
 or it will apply to the next PROC if there is not a current one.
It is recommended that you put ODS OUTPUT after your PROC statement,
 and before the next PROC, DATA or RUN statement.

/*Step 1 - get the listing of outputs that ODS will produce*/
ods trace on;

proc GLM data=sashelp.class;
model age=height weight height*weight;
run;

ODS trace off;

/*Step 2 - look at the possible outputs*/
/*
55 proc GLM data=sashelp.class;
56 model age=height weight height*weight;
57 run;

Output Added:

Name: NObs
Label: Number of Observations
Template: STAT.GLM.NObsNotitle
Path: GLM.Data.NObs

Output Added:

Name: OverallANOVA
Label: Overall ANOVA
Template: stat.GLM.OverallANOVA
Path: GLM.ANOVA.Age.OverallANOVA

Output Added:

Name: FitStatistics
Label: Fit Statistics
Template: stat.GLM.FitStatistics
Path: GLM.ANOVA.Age.FitStatistics

Output Added:

Name: ModelANOVA
Label: Type I Model ANOVA
Template: stat.GLM.Tests
Path: GLM.ANOVA.Age.ModelANOVA

Output Added:

Name: ModelANOVA
Label: Type III Model ANOVA
Template: stat.GLM.Tests
Path: GLM.ANOVA.Age.ModelANOVA

Output Added:

Name: ParameterEstimates
Label: Solution
Template: stat.GLM.Estimates
Path: GLM.ANOVA.Age.ParameterEstimates

Output Added:

Name: ContourFit
Label: Contour Fit Plot
Template: Stat.GLM.Graphics.ContourFit
Path: GLM.ANOVA.Age.ContourFit

58
59 ODS trace off;

*/

/*Step 3 code the ODS statement to produce an output file*/

PROC GLM data=sashelp.class;
model age=height weight height*weight;
ods output FitStatistics=myFitStats
 ParameterEstimates=Betas
 OverallANOVA=Overall;
QUIT;
run;
14
1
V���252
3
ordinal(

1
332
1
1
ordinal(count , number1, number2< , number3<...>>)
182
1
N���252
3
pctl(

1
332
1
1
pctl<n>(percentage , number1< , number2<...>>)
183
1
;���252
3
pdf(

1
332
1
1
pdf('Bernoulli|beta|binomial|Cauchy|chiSquare|exponential|F|gamma|geometric|hyperGeometric|LaPlace|logistic|logNormal|negBinomial|normal|Gauss|normalMix|Pareto|Poissont|uniform|Wald|iGauss|Weibull' , quantile< , shapeLocationOrScaleParameter1< , shapeLocationOrScaleParameter2<...>>>)
245
1
7���252
3
perm(

1
332
1
1
perm(universe , sample)
236
1
H���252
3
poisson(

1
332
1
1
poisson(mean , integerRandomVariable)
246
1
S���252
3
probbeta(

1
332
1
1
probBeta(numericRandomVariable , shape , shape)
247
1
s���252
3
probbnml(

1
332
1
1
probBnml(probabilityOfSuccess , independentBernoulliTrials , numberOfSuccesses)
248
1
h���252
3
probbnrm(

1
332
1
1
probBnrm(numericVariable , numericVariable , correlationCoefficient)
249
1
d���252
3
probchi(

1
332
1
1
probChi(numericRandomVariable , degreesOfFreedom , nonCentrality)
250
1
w���252
3
probf(

1
332
1
1
probF(numericRandomVariable , numeratorDegreesOfFreedom , denominatorDegreesOfFreedom)
251
1
I���252
3
probgam(

1
332
1
1
probGam(numericRandomVariable , shape)
252
1
{���252
3
probhypr(

1
332
1
1
probHypr(population , itemsInCategory , sampleSize , integerRandomVariable , oddsRatio)
253
1
:���252
3
probit(

1
332
1
1
probiT(numericProbability)
263
1
«���252
3
probmc(

1
332
1
1
probMC('Dunnett1|Dunnett2|maxMod|range|Williams'< , quantile>< , leftProbability> , degreesOfFreedom , numberOfTreatments< , parameters>)
254
1
i���252
3
probnegb(

1
332
1
1
probNegB(probabilityOfSuccess , numberOfSuccesses , numberOfFailures)
255
1
A���252
3
probnorm(

1
332
1
1
probNorm(numericRandomVariable)
256
1
`���252
3
probt(

1
332
1
1
probT(numericRandomVariable , degreesOfFreedom , nonCentrality)
257
1
���252
3
proc append

1
332
1
30
/**APPEND******************************/
/**************************************/
data Males females(drop=age);
set sashelp.class;
if sex="M" then output males;
else output Females;
run;
proc sql;
drop table combo;quit;

PROC APPEND
	BASE= Combo /*sas creates base if it does not exist*/
	DATA= females /*put smaller data set here*/
	/*FORCE*/ /*use if data sets have different variables or attributes*/
;
quit;
PROC APPEND /*Intentional failure - uncomment FORCE*/
	BASE= Combo /*sas creates base if it does not exist*/
	DATA= males /*put smaller data set here*/
	/*FORCE*/ /*use if data sets have different variables or attributes
				will NOT add "bad" vars but will allow append to happen for good vars*/
;
quit;
/*FORCE forces the APPEND statement to concatenate only the "matching variables" in data sets when
 the DATA= data set contains variables that either
(1) are not in the BASE= data set,
(2) do not have the same type as the variables in the BASE= data set or
(3) are longer than the variables in the BASE= data set.
 non-matching variables can be dropped*/
/********************************/
391
1
,���252
3
proc catalog

1
332
1
6
/**Proc Catalog******************************/
/**/
/*Has many uses - suggest a reading of the manual*/
/*Here we simpley delete all files from a library (here we kill work)*/
proc catalog Cat=work._all_ Kill;
quit;
393
1
°���252
3
proc chart

1
332
1
30
/** Proc Chart - suggest reading on Proc GChart *******/
/* Proc chart is powerful but is for old style printers *******/
/*GCHART has better graphics - check out the manual on GCHART*/
PROC CHART data=<dataSetName>;
 BLOCK variable(s) </ option(s)>;
 	BY <DESCENDING> variable-1 	<...<DESCENDING> variable-n> <NOTSORTED>;
 HBAR variable(s) </ option(s) are below>;
 PIE variable(s) </ option(s) are below>;
 STAR variable(s) </ option(s) are below>;
 VBAR variable(s) </ option(s) are below>;
run;

proc chart data=sashelp.class;
/*SAS makes "nice" greoups of ages unless you Code some options*/
/*Options are powerful but interact in complex ways*/
hbar age /group=sex /*discrete- Shows average age. Using discrete is suggested here */;
hbar age /Subgroup=sex discrete;
Pie age /discrete;
Pie sex;
Vbar age /Subgroup=sex discrete;
Vbar age /Subgroup=sex levels =10; /*create 10 age groups*/
Vbar age /Subgroup=sex Midpoints= 11 15;/*Two groups with midpoints at 11 and 15*/
run;

/*options DISCRETE FREQ= MISSING SUMVAR= TYPE= 						*/
/*Specify groupings: G100 GROUP= LEVELS= MIDPOINTS= SUBGROUP= 				*/
/*Compute statistics: CFREQ CPERCENT FREQ MEAN PERCENT SUM 					*/
/*Control output format 														*/
/*	ASCENDING AXIS= DESCENDING GSPACE= NOHEADER NOSPACE NOSTATS NOSYMBOL NOZEROS*/
/*	 REF= SPACE= SYMBOL= WIDTH= 												*/
394
1
?���252
3
proc contents

1
332
1
8
/************** Proc Contents************/
/***/
PROC CONTENTS
	directory 				/*Print a list of the SAS files in the SAS data library*/
	DATA=sashelp.shoes 	/*Specify the input data set - also used with output data set*/ /*Print a list of the variables by their logical position in the data set */
	position /*adds a second printout in the order in which the vars appear in the data set*/
	out=ContentsAsDataSet ; /*Specify the output data set */
run;
395
1
����252
3
proc copy

1
332
1
6
libname bogus "D:\Documents and Settings\rlavery\My Documents";
PROC COPY IN=work OUT=bogus 		/*source and destination libraries*/
	INDEX=YES; 						/*Copy index as well as data*/
	select class:; 					/*files to be copied*/
	run;

396
1
µ���252
3
proc datasets

1
332
1
113
/***************** Proc Datasets ***************************/
/* The DATASETS procedure is a utility procedure that manages your SAS files */
/*copy, rename , repair. append, delete, list, list & modify attributes SAS files*/
/*manipulate passwords on SAS files */
/*create and manage audit files for SAS data sets */
/*create and delete integrity constraints on SAS data sets. */

/*Delete all files starting with the same prefix - files created by a macro start with _M_ */
proc sql Noprint;
 select memname into :MacroTables separated by ' '
 from dictionary.tables
 where libname="WORK" and substr(memname,1,3) = "_M_" ;
 quit;

 Proc datasets lib=work;
 delete &MacroTables;
 quit;

/*Change lots of characteristics without reading the data*/
data class;
set sashelp.class;
run;

PROC DATASETS lib=work;
/*Can do lots of thngs*/
modify class (label="labels are good for documentation" sortedby=name);
	index create name;
	index create NameAge=(name age);
	label name ="Name of student";
 format age 5.2;
quit;

proc contents data=class;run;

proc print data=class;
run;

PROC DATASETS
	LIBRARY= work				/*Specify the procedure input library*/
	DETAILS /*Put info in the log about: number of observations, variables, indexes, and data set labels */;
	/*DELETE WORK.CLASS*/	/*Delete dataset*/
QUIT;

/*http://sastricks.wikidot.com/base:procdataset*/
/*Delete all labels in th.pnsmutaa*/
proc datasets library = th nolist;
 modify pnsmutaa;
 attrib _all_ label='';
 quit;

/*Rename th.bstpns_org to th.bstpns_org1*/
proc datasets library = th nolist;
 change stpns_org = bstpns_org1;
 quit;

/*Delete all in a library*/
proc datasets library = work kill nolist;
 quit;

/*Delete one specific dataset from a library*/
proc datasets library = work nolist;
 delete tst1;
 quit;

/*Copy all in library th to work*/
proc datasets nolist;
 copy out=work in=th;
 quit;

/*Copy th.rappformat to work.rappformat*/
proc datasets nolist;
 copy out=work in = th;
 select rappformat;
 quit;

/***
Section __:http://www.stats.uwa.edu.au/Internal/sas_training
**/
 /* 4. proc datasets version of above - list all datasets in the specified library */
proc datasets library=work;
quit; run;

/* 5. describe a single dataset */
proc datasets library=work;
contents data=en1;
quit; run;

/* 11. move just one dataset from stud07 to work */
proc datasets;
copy move in=stud07 out=work;
select en3;
quit; run;

/* 13. change the name of a dataset */
proc datasets library=work;
change en2=en4;
quit; run;

/* 14. append datasets - note this is quicker than using a set command, as only the appended dataset is read in */
proc datasets library=work;
append out=en4 data=en1;
quit; run;

/* 15. rename a variable */
proc datasets library=work NOlist;
modify en1;
rename student=personid course = course_cd;
run; quit;

397
1
J���252
3
proc export

1
332
1
21
/****************** Proc EXPORT **********/
/*reads data from a SAS data set and writes it to an external data source*/
/*Creates Access , Excel , Lotus ,& blank, comma, or tab delimited files */
PROC EXPORT DATA=<libref.>SAS-data-set <(SAS-data-set-options)>
OUTFILE="filename" | OUTTABLE="tablename"
<DBMS=Exc> <REPLACE>;

libname bogus "D:\Documents and Settings\rlavery\My Documents";

PROC EXPORT DATA= sashelp.class(where=(SEX="M"))
 DBMS=EXCEL
 OUTFILE= "D:\Documents and Settings\rlavery\My Documents\Example.xls" /*path to, and name of, workbook*/
			REPLACE; /*replace the workbook if it exists*/
			sheet=Males; /*Sheet is on it's own line - make a sheet*/
RUN;
PROC EXPORT DATA= sashelp.class(where=(SEX="F"))
 DBMS=EXCEL
 OUTFILE= "D:\Documents and Settings\rlavery\My Documents\Example.xls" /*path to, and name of, workbook*/
			REPLACE; /*replace the workbook if it exists*/
			sheet=Females;/*Sheet is on it's own line - make a sheet*/
RUN;
398
1
ž���252
3
proc format

1
332
1
226

/******** Proc FORMAT **************/
/* Suggested Reading
Creating formats with a program
http://www.nesug.org/proceedings/nesug03/at/at006.pdf

My Friend the SASÃ‚Â® Format Andrew Kaep SUGI30 paper 253
http://www2.sas.com/proceedings/sugi30/253-30.pdf

MULTILABEL - A useful addition to the FORMAT procedure Venky Chakravarthy
http://www.lexjansen.com/pharmasug/2004/technicaltechniques/tt22.pdf

Multiple Facts about Multilabel Formats Gwen D. Babcock NESUG 2008
http://www.nesug.org/proceedings/nesug08/cc/cc14.pdf

Proc Format Advanced Techniques: Multi-label and Nested Formats Tatiana Nevmyrych & Jennifer Clark
http://www.ppdi.com/resource_library/whitepapers/tnevmyrych_jclark_pharmasug_2007.pdf

*/

proc format;/*examples of creating formats - no use shown for these*/
 value $skilltest 'a'-<'e'		,'A'-<'E'	='Test A' /*character format*/
 		'e'-<'m'	,'E'-<'M'	='Test B'
 		'm'-'z~'	,'M'-'Z~'	='Test C';
	 value levels (fuzz=.2) 					1='A' /*num format*/
 							2='B'
 							3='C';
run;

proc format; /*These formats will be used below*/
		value $ gender "M"="Male" "F"="Female";
		value AgeGrp 0 -< 14 = "younger"
 14- high = "older";
run;
proc print data=sashelp.class;
format age AgeGrp. Sex $gender.; /*associate formats with the vars ONLY during this proc*/
run;

data new;
set sashelp.class;
newage=put(age,agegrp.);
newsex=put(sex,$gender.);
format age agegrp.;	/*associate the format PERMANENTLY with the variable*/
run;
proc print data=new;
title "formats had been permanently associated in data step above";
title2 " so we see formatted values w/o a format statement";
run;/*note: no formats specified in this print*/

**using data steps to create a format that can be used to filter data;
/* http://www.nesug.org/Proceedings/nesug03/at/at006.pdf */
/*This can be done easier, but the example runs*/

data NeedInfoOn; /*Inagine we have a small list of customers*/
set sashelp.class(keep=name);
if mod(_n_,4)=0;
run;

data Imagine2BeVeryBig;/*we have a big file, with all their info*/
set sashelp.class;
run;

data cntlin(keep= FmtName start label type HLo);
	set NeedInfoOn(rename=(name=start)) end=eof;
	retain fmtname "GetCust" type "C" label "Y" ;
	output;
	IF eof=1 then
		do;
		Number=.;
		start="";
		HLo="O";
		label="N";
		output;
		end;
	;
run;

proc format cntlin=cntlin;
run;

data desiredCustomers;
set Imagine2BeVeryBig;
Number=_n_;
if put(name,$GetCust.)="Y";
run;

options nocenter;
proc print data=desiredCustomers;
run;

*multiformats only work with means, summary and tabulate;
DANGER - THIS IS TRICKEY;
proc format ;
value $GAndT (multilabel)
	"F"="Females"
	"M"="Males"
	"F","M"="Total";
	run;

proc format cntlout=FmtVarNames;
select GAndT;
run;

proc print data=FmtVarNames;
run;

proc means data=sashelp.class nway missing;
class sex /mlf;
class age;
format sex $GAndT.;
run;

proc tabulate data=sashelp.class missing;
class sex /mlf;
class age;
table Sex,age;
format sex $GAndT.;
run;

/***
Section __: Picture formats
**/
libname proclib 'SAS-library-1 ';
libname library 'SAS-library-2';

options nodate pageno=1 linesize=80 pagesize=40;

proc format library=library;
 picture uscurrency low-high='000,000' (mult=1.61 prefix='$');
 run;

proc print data=proclib.staff noobs label;
 label salary='Salary in U.S. Dollars';
 format salary uscurrency.;
 title 'PROCLIB.STAFF with a Format for the Variable Salary';
run;

/***
Section __: Printing the Description of Informats and Formats
**/
libname library 'SAS-library';
options nodate pageno=1 linesize=80 pagesize=60;

 proc format library=library fmtlib;
 select @evaluation nozeros;
 title 'FMTLIB Output for the NOZEROS. Format and the';
 title2 'Evaluation. Informat';
run;

/***
Section __: INFormat
**/
INVALUE <$>name <(informat-option(s))> <value-range-set(s)>;
/*INVALUE Statement Creates an informat for reading and converting raw data values.
UPCASE converts all raw data values to uppercase before they are compared to the possible ranges.
 you use UPCASE, then make sure the values or ranges you specify are in uppercase. */
/*
Required Arguments
name
Options
 DEFAULT=length
 FUZZ= fuzz-factor
 MAX=length
 MIN=length
 NOTSORTED
 JUST left-justifies all input strings before they are compared to the ranges.
 UPCASE converts all raw data values to uppercase before they are compared to the possible ranges.
 If you use UPCASE, then make sure the values or ranges you specify are in uppercase.

The informat converts the raw data to the values of informatted-value on the right side of the equal sign.
informatted-value is the value you want the raw data in value-or-range to become. Use one of the following forms for informatted-value:
 'character-string' is a character string up to 32,767 characters long.
 	 Typically, character-string becomes the value of a character variable when you use the informat to convert raw data.
 Use character-string for informatted-value only when you are creating a character informat.
 If you omit the single or double quotation marks around character-string, then the INVALUE statement assumes that the quotation marks are there.
	number is a number that becomes the informatted value.
 Typically, number becomes the value of a numeric variable when you use the informat to convert raw data.
 Use number for informatted-value when you are creating a numeric informat.
 The maximum for number depends on the host operating environment.
 ERROR treats data values in the designated range as invalid data.
 SAS assigns a missing value to the variable, prints the data line in the SAS log, and issues a warning message.
 SAME prevents the informat from converting the raw data as any other value.
 For example, the following GROUP. informat converts values 01 through 20 and assigns the numbers 1 through 20 as the result. All other values are assigned a missing value.
 invalue group 01-20= _same_
 other= .;

Consider the following examples:
The $GENDER. character informat converts the raw data values F and M to character values '1' and '2':
invalue $gender 'F'='1'
 'M'='2';
 The dollar sign prefix indicates that the informat converts character data.

When you are creating numeric informats, you can specify character strings or numbers for value-or-range. For example, the TRIAL. informat converts any character string that sorts between A and M to the number 1 and any character string that sorts between N and Z to the number 2. The informat treats the unquoted range 1-3000 as a numeric range, which includes all numeric values between 1 and 3000:
 invalue trial 'A'-'M'=1
 'F'-'Z'=2
 1-3000=3;

The CHECK. informat uses _ERROR_ and _SAME_ to convert values of 1 through 4 and 99. All other values are invalid:
 invalue check 1-4=_same_
 99=.
 other=_error_;
 If you use a numeric informat to convert character strings that do not correspond to any values or ranges,
 then you receive an error message.

Proc format;
 invalue Gndr 'M'=1
 'F'=2;
Data new(keep=name sex sexno);
 set sashelp.class;
 SexNo=input(sex,Gndr.);
run;

Proc contents data=new;
run;

*/

399
1
k���252
3
proc freq

1
332
1
50
/**** Proc Freq ******************/
/****** Formats are powerful additions to several SAS procs ******************/
/*sparse option http://www.nesug.org/proceedings/nesug02/cc/cc003.pdf*/
proc format; /*These formats will be used below*/
		value $ gender "M"="Male" "F"="Female";
		value AgeGrp 0 -< 14 = "younger"
 14- high = "older";
run;

data class;
set sashelp.class;
if mod(_n_,10)=0 then sex="";
run;

proc freq data=class /*noprint*/;
	tables age*sex ;
run;

proc freq data=class /*noprint*/;
	tables age*sex /missing;
run;

proc freq data=class /*noprint*/;
	tables age*sex /list missing;
run;

************************************;
proc freq data=class /*noprint*/;
	tables age*sex 			 / norow nocol nopct /*use to make the table fit "smaller"*/
								out=MyFreqs1 /*data set with output*/
								all 			 /*prints LOTS of statistics*/;
	tables age*sex*height	 / list /*do not format as x-tab*/
								OUT=MyFreqs2 /*data set with output*/
								/*sparse*/ /*Make all combinaitons of values show in list type ouptut*/;
FORMAT age ageGrp. 							 /*formats the frequencies in margins of crosstabulation tables*/;
*WEIGHT variable ;								 /*increases/decreases importnace of observatIOns*/;
	Run;

/*Syntax for requesting tables can be nested and elegant*/
/* Examples of nesing table requests shown below */

/*tables age*(sex height); tables age*sex age*height; */
/*tables (age sex)*(height weight);
	tables age*height sex*height age*weight sex*weight; */
/*tables (age sex height)*weight;
		tables age*weight sex*weight height*weight; */
/*tables name - - age; tables name sex age; */
/*tables (name - - age)*height;
	tables Age*height sex*height age*height; */
400
1
@���252
3
proc import

1
332
1
23
/******************* Proc Import ***/
/* NO WORKING EXAMPLE PROVIDED - it would require a fle on your machine */
/*IMPORT reads external data source and makes a SAS data set. */
/*data sources can be Access, Excel, Lotus, & a blank, comma, and tab delilmited.*/

PROC IMPORT		OUT= WORK.NeededFile
 /*use proc export abbrev to create an excel file for practice*/
 DATAFILE= "C:\Transfer\NeededFile.xls"
 DBMS=EXCEL REPLACE;	/*you can import other kinds of tables as well*/
 RANGE="range-name or absolute-range"; /*identifying the rectangular set of cells to import*/
 SHEET=spreadsheet-name; /*identifies a particular spreadsheet to be read*/
 GETNAMES=YES;
		/*generate SAS variable names from the column names in the input file's first row of data.*/
 DATAROW=n; /*starts reading data from row number n */
 GUESSINGROWS=1(to 3276); /*reads this number of rows before guessing if col type= N or C*/
 MIXED=YES | NO;/*if YES, converts numeric data into character data values for a column that contains mixed data types*/

 USEDATE=YES | NO; /*If YES, then DATE. format is used for date/time columns in the data source table while importing data from Excel workbook.
	 If NO, then DATETIME. format is used for date/time*/
 SCANTIME=YES;
 /*scans all row values for a DATETIME data type field and automatically determines
	 	the TIME data type if only time values (no date or datetime values) exist in the column.*/
RUN;
26
1
ð���252
3
proc means

1
332
1
81
/********* PROC MEANS *********/
/*** Means is the same as Proc Summary : Also see summary for mre cool stuff****/
/*for production reports (and transposing) investigate:*/
 /*class options:EXCLUSIVE & PRELOADFMT */
 /*Summary options: CLASSDATA=, COMPLETETYPES, EXCLUSIVE, PRINTALLTYPES*/

/*** Example 1 of proc means ***/
/*what you print is not what goes in the output file*/
Proc means data=sashelp.class
	n mean P25 P50 P75 missing MaxDec=4 /*noprint*/;
	class sex; /*using clas or By - class does not require a sorted data set*/
	output out=SexMean n(age height)=nage nheight
					min(age weight)=MinAge MinWeight
					sum(height)=sumHeight;
types () sex;
	/*Types allows you to specify what you want - more powerful than NWAY */
	/*Check out both the types and ways statements*/
/*Also read about exclusive, completetews and pre-loading a format or control file*/
run;

proc print data=SexMean;
run;

/*Example 2 from SAS help - shows the use of a classdata and Exclusive options */
/*classdata and exclusive are very good for production reports */
/* when you want a value to be in the report even if it is not in the data */
/* and ONLY want to process the levels of class varaibels that interest management*/
data cake;
 input LastName $ 1-12 Age 13-14 PresentScore 16-17
 TasteScore 19-20 Flavor $ 23-32 Layers 34 ;
 datalines;
Orlando 27 93 80 Vanilla 1
Ramey 32 84 72 Rum 2
Goldston 46 68 75 Vanilla 1
Roe 38 79 73 Vanilla 2
Larsen 23 77 84 Chocolate .
Davis 51 86 91 Spice 3
Strickland 19 82 79 Chocolate 1
Nguyen 57 77 84 Vanilla .
Hildenbrand 33 81 83 Chocolate 1
Byron 62 72 87 Vanilla 2
Sanders 26 56 79 Chocolate 1
Jaeger 43 66 74 1
Davis 28 69 75 Chocolate 2
Conrad 69 85 94 Vanilla 1
Walters 55 67 72 Chocolate 2
Rossburger 28 78 81 Spice 2
Matthew 42 81 92 Chocolate 2
Becker 36 62 83 Spice 2
Anderson 27 87 85 Chocolate 1
Merritt 62 73 84 Chocolate 1
;

options nodate pageno=1 linesize=80 pagesize=60;

 data caketype; /*a driver file - management wants to see informtion on these levels*/
 input Flavor $ 1-10 Layers 12;
 datalines;
Vanilla 1
Vanilla 2
Vanilla 3
Chocolate 1
Chocolate 2
Chocolate 3
;

 proc means data=cake range median min max fw=7 maxdec=0
 classdata=caketype /*show all levels that are in the driver file*/
			exclusive /*only show what is in the driver file*/
			printalltypes;
			output out=CakeOut;
 var TasteScore;
 class flavor layers;
 title 'Taste Score For Number of Layers and Cake Flavor';
run;
proc print data=CakeOut;
title "Note that we have freq=0 (effect of the printalltypes";
title2 "Note that we have no spice cakes (Effect of the exclusive)";

run;

369
1
š���252
3
proc options

1
332
1
3
/******** Proc Options **********************/
/* writes system options/settings to the log */
proc options ;run;
371
1
+���252
3
proc plot

1
332
1
20
/*********** PROC PLOT *******/
/*Proc plot is powereful but is for impact printers*/
/* for nicer looking output, see proc Gplot */
PROC PLOT DATA=sashelp.class ;
 PLOT Height*age=sex /*make the plotting symbol= the value of sex for that obs*/
	/ box
	Href=12 /*put a reference line on the chart*/
	Vref=60 /*put a reference line on the chart*/
	Haxis=0 to 20 by 2 /*control the horizontal axis*/;
run;

options nodate pageno=1 linesize=120 pagesize=60;
proc plot data=sashelp.class vpercent=50 hpercent=50;
title "Cool! Multiple plots per page";
	 plot Weight*age=Sex;
 plot Height*age='H';
 plot Height*Weight=sex age*Weight='A'
		/ overlay box;
		/*plotting multiple vars per plot is good for "pred & actual" plots in stat*/
run;
372
1
–���252
3
proc print

1
332
1
38
/****************** PROC PRINT ***********/
/* has lots of useful options */
proc format;
 value $LongGn "M"="Males"
			 "F"="Females";	
run;

data class;
	set sashelp.class;
	spacer="*";
	Gndr_of_Student=sex;
	label spacer="Spacer_variable";
run;

proc sort data=class out=SortdClass;
 by sex descending name; /*sort for by processing below*/
run;

PROC PRINT DATA=SortdClass
 /*(obs=10) print 10 obs- good for quick QC*/
 /*obs= "Observation_Number "*/
		N /*prints the number of observations in the data set, in BY groups,
		 or both and specifies explanatory text to print with the number.*/
		NOOBS 	/*suppresses the obs column*/
		DOUBLE /*double space the output*/	
		UNIFORM /*keep same page layout if output goes to multiple pages*/
		label /*use labels for column headers*/
		split="_" /*Split var names and lables on this character*/
	Width=Min;
	BY Sex ; /*a new description*/
	PAGEBY Sex; /*new page when By variable cahnges*/
 	SUMBY Sex; /*If BY var. changes, any BY var. to left, print sum var(s)in SUM statement*/
	ID name ; /*print instead of the number at beginning of row*/
 	SUM age weight ; /*identifies the numeric variables to total in the report.*/
	VAR _numeric_ spacer _character_ ; 	/*variabels to be printed and their order*/
	format sex $LongGn.;
	
; run;
373
1
Z���252
3
proc printto

1
332
1
53
/*********** PROC PRINTTO **/
/**PRINTTO defines destinations for Proc output and for the SAS log */
/* If you RSUBMIT, there is a little extra complexity */

/***** Example 1: Local submit and local log***************/
PROC PRINTTO
LOG='C:\temp\example.log' /*identifies the location and routes the SAS log to this alternate location*/
PRINT='C:\temp\example.lst' /*identifies the location and routes the procedure output to this alternate location*/
NEW	 /*specifies that the current log or procedure output writes over the previous contents of the file*/;
run;

proc print data=sashelp.class;
run;

Proc Printto; /*Clear the routing - log and list go to "regualr" windows*/
run;

/***** Example 2: remote submit and local log ***************/
/* if Printto is NOT inside the RSUBMIT, log/list are stored locally**/
PROC PRINTTO
LOG='C:\temp\example.log' /*identifies the location and routes the SAS log to this alternate location*/
PRINT='C:\temp\example.lst' /*identifies the location and routes the procedure output to this alternate location*/
NEW	 /*specifies that the current log or procedure output writes over the previous contents of the file*/;
run;

rsubmit;
proc print data=sashelp.class;
run;
endrsubmit;

Proc Printto; /*Clear the routing - log and list go to "regualr" windows*/
run;

/***** Example 3: remote submit and Remote log***************/
/* If PRINTTO is inside the rsubmit, log/list are stored remotely*/
rsubmit;
PROC PRINTTO
	LOG='/sasuser/rlavery/example.log' /*identifies the location and routes the SAS log to this alternate location*/
	PRINT='/sasuser/rlavery/example.lst' /*identifies the location and routes the procedure output to this alternate location*/
	NEW	 /*specifies that the current log or procedure output writes over the previous contents of the file*/;
run;

proc print data=sashelp.class;
run;

Proc Printto; /*Clear the routing - log and list go to "regualr" windows*/
run;
endrsubmit;

374
1
Å���252
3
proc rank

1
332
1
145
/************proc rank******/
/*RANK computes ranks for one or more numeric variables and sends ranks to a new data set
PROC RANK by itself produces no printed output.
PROC RANK DATA=
	OUT= names the output data set.If SAS-data-set does not exist, PROC RANK creates it.
 	DESCENDING 	reverses the direction of the ranks
	FRACTION computes fractional ranks
 by dividing each rank by the number of observations having nonmissing values of the ranking variable.
	GROUPS=number-of-groups assigns group values ranging from 0 to number-of-groups minus 1.
	NORMAL=BLOM | TUKEY | VW computes normal scores from the ranks.
	NPLUS1 computes fractional ranks by dividing each rank by the denominator n+1
	PERCENT divides each rank by the number of observations that have nonmissing values of the variable
 and multiplies the result by 100 to get a percentage
	TIES=HIGH | LOW | MEAN | DENSE specifies how to compute normal scores or ranks for tied data values.
		HIGH assigns the largest of the corresponding ranks (or largest of the normal scores when NORMAL= is specified).
		LOW assigns the smallest of the corresponding ranks (or smallest of the normal scores when NORMAL= is specified).
		MEAN assigns the mean of the corresponding rank (or mean of the normal scores when NORMAL= is specified).
		DENSE computes scores and ranks by treating tied values as a single-order statistic.
			

;
 BY <DESCENDING> variable-1 <...<DESCENDING> variable-n> <NOTSORTED>;
 VAR data-set-variables(s);
 RANKS new-variables(s);

The output data set contains all the variables from the input data set
 plus the variables named in the RANKS statement.
 If you omit the RANKS statement, the rank values replace the original variable values in the output data set.

Missing Values
Missing values are not ranked and are left missing when ranks or rank scores replace the original values
 in the output data set.

*/

/*pretty basic rank but there are options*/
PROC RANK data=sashelp.class
			OUT=RankedClass
			Ties=mean /*you have options here: specify condense, low, avg or high*/
			;
			Var age height weight;
			ranks RankAge RankHeight
						weight/*can overwrite old variable*/;
run;
proc print data=rankedClass;
run;

/***Ranks inside Groupings *******/
proc sort data=sashelp.class
 out = GndrAgeClass;
by sex Age;
run;

proc Rank data= GndrAgeClass
 out =RankedGndrAgeClass groups=3;
 by Sex;
 var Age;
	 ranks AgeGrpByGndr;
run;

Proc print data= RankedGndrAgeClass;
run;

/*Example" ties low and descending are logically related*/
options nodate pageno=1 linesize=80 pagesize=60;
data elect;
 input Candidate $ 1-11 District 13 Vote 15-18 Years 20;
 datalines;
Cardella 1 1689 8
Latham 1 1005 2
Smith 1 1406 0
Walker 1 846 0
Hinkley 2 912 0
Kreitemeyer 2 1198 0
Lundell 2 2447 6
Thrash 2 912 2
;

proc rank data=elect out=results
	ties=low
	descending;
 by district;
 var vote years;
 ranks VoteRank YearsRank;
run;

proc print data=results n;
 by district;
 title 'Results of City Council Election';
run;

/*example partition observations into groups on the basis of values of two input variables
 groups observations separately within BY groups
 replace the original variable values with the group values.
Cool Logic from PROC Rank
The group values pair up swimmers with similar times to work on each stroke.
For example, Andrea and Ellen work together on the backstroke because they have the fastest
times in the female class.
The groups of male swimmers are unbalanced because there are seven male swimmers;
for each stroke, one group has three swimmers.
*/
options nodate pageno=1 linesize=80 pagesize=60;

data swim;
 input Name $ 1-7 Gender $ 9 Back 11-14 Free 16-19;
 datalines;
Andrea F 28.6 30.3
Carole F 32.9 24.0
Clayton M 27.0 21.9
Curtis M 29.0 22.6
Doug M 27.3 22.4
Ellen F 27.8 27.0
Jan F 31.3 31.2
Jimmy M 26.3 22.5
Karin F 34.6 26.2
Mick M 29.0 25.4
Richard M 29.7 30.2
Sam M 27.2 24.1
Susan F 35.1 36.1
;

proc sort data=swim out=pairs;
 by gender;
run;

proc rank data=pairs out=rankpair groups=3;
 by gender;
 var back free;
run;

proc print data=rankpair n;
 by gender;
 title 'Pairings of Swimmers for Backstroke and Freestyle';
run;

375
1
‹.��252
3
proc report

1
332
1
322
/***
Section __Proc Report:
**/
/*This is so powerful that it is hard to describe how options interact*/
/*Basics are simple, but management usually wants fancy*/

/*Overviews*/
/*http://www2.sas.com/proceedings/sugi29/122-29.pdf RayP and DanB*/
/*http://www2.sas.com/proceedings/sugi28/071-28.pdf Lauren*/
/*http://www2.sas.com/proceedings/sugi31/142-31.pdf Louise*/
/*http://www2.sas.com/proceedings/sugi31/060-31.pdf Temp Var Molter*/
/*http://www.lexjansen.com/pharmasug/2007/ad/ad16.pdf report Null David, Lanie, Akari*/
/*http://www2.sas.com/proceedings/forum2008/170-2008.pdf compare and contrast keith*/

/*Art Carpenter wrote the best book and wrote great stuff on compute blocks*/
/*http://www.lexjansen.com/pharmasug/2005/handsonworkshops/hw07.pdf basics Art*/
/*http://www2.sas.com/proceedings/forum2008/188-2008.pdf Comput Block Practicum Art*/
/*http://www2.sas.com/proceedings/forum2008/188-2008.pdf Comput Blocks 2 Art*/
/*http://www2.sas.com/proceedings/forum2007/242-2007.pdf Advanced Compute Block Art*/
/*http://www2.sas.com/proceedings/forum2007/025-2007.pdf Naming Issues Art*/

/*http://www.lexjansen.com/pharmasug/2004/CodersCorner/CC07.pdf Compute Blocks Sharon*/

/*Ray and Daphnie - wrote the classic papers*/
/*http://nesug.info/Proceedings/nesug99/bt/bt138.PDF Still Not Using*/
/*http://www.lexjansen.com/pharmasug/2004/handsonworkshops/hw01.pdf Still Not Using*/
/*http://www2.sas.com/proceedings/sugi30/244-30.pdf Is it Pretty*/
/*http://www.lexjansen.com/pharmasug/2006/sasinstitute/sa04.pdf Doing It In Stye;*/
/*http://www.nesug.org/proceedings/nesug99/cc/cc060.PDF Missing Obs Column*/

/*Useful*/
/*http://www2.sas.com/proceedings/sugi29/242-29.pdf Getting up to speed Kimberly*/
/*http://nesug.info/Proceedings/nesug99/cc/cc117.PDF CHRIS ID option*/
/*http://www2.sas.com/proceedings/sugi30/259-30.pdf Gentle Intro Ben*/
/*http://www2.sas.com/proceedings/forum2008/079-2008.pdf Step-by-step David*/
/*http://www2.sas.com/proceedings/sugi27/p059-27.pdf Quick MeiMei, Sandra, Maria*/
/*http://www2.sas.com/proceedings/sugi30/036-30.pdf Statistical Nestor*/
/*http://www2.sas.com/proceedings/forum2008/173-2008.pdf complex Cynthia */
/*http://www.lexjansen.com/pharmasug/2002/proceed/TechTech/tt20.pdf Footnotes Angleina*/
/*http://www2.sas.com/proceedings/sugi24/Coders/p079-24.pdf*/
/*http://www2.sas.com/proceedings/forum2007/056-2007.pdf*/
/*http://www2.sas.com/proceedings/sugi22/HANDSON/PAPER149.PDF*/
/*http://analytics.ncsu.edu/sesug/1999/031.pdf Text flow donals and John*/
/*http://analytics.ncsu.edu/sesug/2007/CC15.pdf ExcelXP Elayne*/
/*http://www.lexjansen.com/pharmasug/2002/proceed/Coders/cc08.pdf Whole page Richard */

/*http://www2.sas.com/proceedings/sugi31/129-31.pdf style thaer*/
/*http://www2.sas.com/proceedings/forum2008/224-2008.pdf Color Style Wendy*/
/*http://analytics.ncsu.edu/sesug/2007/CC13.pdf EMAIL Theresa*/

/*Example 1 - basic stuff and the internal file*/
title1 "There are some tricks to this - This is not Exactly the internal file";
title2 "Order supresses reopeating of vlaues in the internal file annd report";
title3 "missing Repeating values are added back in as thius file is created ";

proc report data=sashelp.class nowd
		panels=2 /*Specify the number of panels on each page of the report*/
		PS=30 ls=120 /*Specify the number of columns/lines in a page*/
		split="*" /*Specify the split character*/
		MISSING	 /*Consider missing values as valid values for group, order, or across variables*/
		SPACING=2 /*number of blank characters between columns*/
		out=InternalFile 	 /*Holds internal file created by Proc Report*/
		;
column sex name NameSex age height;
 /*the Define sttement Supports preloadfmt and Exclusive for production reporting*/
	define sex 	/ /*order*/ Width=7 "Gender*of*Students";
	define name 	/ Width=7 "Student*Name";
	define NameSex 	/ computed Width=20 "Student*Name" FLOW;
	define age 	/ Sum Width=20 "Age" spacing=3;
	define Height 	/ mean Width=20 "Age" spacing=3;
compute NameSex / character length=30;
	If _break_ = "_RBREAK_" then
	namesex="Age is Sum & Height is avg.";
 Else namesex=trim(name)||" is a "||Sex||" On our records";
endcomp;
rbreak after /summarize DOL;
run;

proc print data=InternalFile;
title1 "There are some tricks to this - This is not Exactly the internal file";
title2 "Order supresses reopeating of vlaues in the internal file annd report";
title3 "missing Repeating values are added back in as thius file is created ";
run;
title "";

/*Example 2 - across variables*/
proc report data=sashelp.class nowd
		split="*" /*Specify the split character*/
		MISSING	 /*Consider missing values as valid values for group, order, or across variables*/
		SPACING=2 /*number of blank characters between columns*/
		out=InternalFile 	 /*Holds internal file created by Proc Report*/
		;
column sex age,(n=count height);
	define sex /group width=4;
	define age / across "-Count and Mean Height by Sex * Ages of Students-";
	define count / "Count*of*Students" center;
	define height / mean "Mean*Height" center;
run;

*example 3 From Art Carpenter***/
* Creating a new NUMERIC column with a compute block;
title1 'Using The COMPUTE Block';
title2 'Adding a Computed Column';
proc report data=sashelp.class split='*' NOWD;
column name sex NmSex(' Weight *--' weight wtkg);
	define name / order width=18 'Last Name*--';
	define sex / display width=6 'Gender*--';
	define NmSex / computed 'Just A Character*Concatination*--';
	define weight / display format=6. 'Pounds*--';
	define wtkg / computed format=9.2 'Kilograms*--';
compute NMSEX /character length=20;
	NMSEX = strip(name)||"_"||Sex;
endcomp;
compute wtkg;
	wtkg = weight / 2.2;
endcomp;
run;
title "";

* example 4 - panels ;
data classlong;
set sashelp.Class sashelp.Class sashelp.Class
	sashelp.Class sashelp.Class sashelp.Class;
spacer="*";
run;

proc report data=ClassLong panels=3 nowd PSPACE=3;
column name sex age spacer;
define name 	/ width=10 spacing=1;
define sex 		/ width=4 spacing=1;
define age 		/ width =4 spacing=1;
define spacer 	/ width =1 spacing=3 "";
run;

* example 5 luo proc report
option background color\;
ods html file='C:\temp1\report1.html';

title1 "<a href='C:\temp1\report2.html'
 >report2";

proc report data=sashelp.class split='*' NOWD style(column)={background=red};
column name sex NmSex(' Weight *--' weight wtkg) ;
	define name / order width=18 'Last Name*--' style(header)={background=yellow};
	define sex / display width=6 'Gender*--';
	define NmSex / computed 'Just A Character*Concatination*--';
	define weight / display format=6. 'Pounds*--';
	define wtkg / computed format=9.2 'Kilograms*--';
compute NMSEX /character length=20;
	NMSEX = strip(name)||"_"||Sex;
endcomp;
compute wtkg;
	wtkg = weight / 2.2;
endcomp;
run;

ods html close;

data classlong;
set sashelp.Class sashelp.Class sashelp.Class
	sashelp.Class sashelp.Class sashelp.Class;
spacer="*";
run;

ods html file="C:\temp1\report2.html" ;
title1 "<a href='C:\temp1\report1.html'
 >Report1";

proc report data=ClassLong panels=3 nowd
 style(column)={background=_undef_};
column name sex age spacer;
define name 	/ width=10 spacing=1 style(column)={background=red};
define sex 		/ width=4 spacing=1 ;
define age 		/ width =4 spacing=1;
define spacer 	/ width =1 spacing=3 "";
run;
ods html close;

/***
Section __: Creating statistics
**/
options ls=120 nocenter;

proc format;/*examples of creating formats - no use shown for these*/
 value $Gndr M		='-Male-' /*character format*/
 F	 ='-Female-';
run;

Proc report data=SASHelp.class nowd
 split="*" Spacing=4;
columns age sex,(N=count height);
define age /group width=10;
define sex /across "-count and mean height by age & sex -" format=$Gndr.;
	define count / "Count*of*Students" center;
	define height / mean "Mean*Height" center;
run;

proc report data=sashelp.class nowd
		split="*" /*Specify the split character*/
		MISSING	 /*Consider missing values as valid values for group, order, or across variables*/
		SPACING=2 /*number of blank characters between columns*/
		out=InternalFile 	 /*Holds internal file created by Proc Report*/
		;
column sex age,(n=count height);
	define sex /group width=4;
	define age / across "-Count and Mean Height by Sex * Ages of Students-";
	define count / "Count*of*Students" center;
	define height / mean "Mean*Height" center;
run;

/**********************/
data grocery;
 input Sector $ Manager $ Department $ Sales @@;
 datalines;
se 1 np1 50 se 1 p1 100 se 1 np2 120 se 1 p2 80
se 2 np1 40 se 2 p1 300 se 2 np2 220 se 2 p2 70
nw 3 np1 60 nw 3 p1 600 nw 3 np2 420 nw 3 p2 30
nw 4 np1 45 nw 4 p1 250 nw 4 np2 230 nw 4 p2 73
nw 9 np1 45 nw 9 p1 205 nw 9 np2 420 nw 9 p2 76
sw 5 np1 53 sw 5 p1 130 sw 5 np2 120 sw 5 p2 50
sw 6 np1 40 sw 6 p1 350 sw 6 np2 225 sw 6 p2 80
ne 7 np1 90 ne 7 p1 190 ne 7 np2 420 ne 7 p2 86
ne 8 np1 200 ne 8 p1 300 ne 8 np2 420 ne 8 p2 125
;
run;

/*libname proclib 'SAS-library';*/
options nodate pageno=1 linesize=80 pagesize=60
 /* fmtsearch=(proclib)*/;

proc format /*library=proclib*/;
 value $sctrfmt 'se' = 'Southeast'
 'ne' = 'Northeast'
 'nw' = 'Northwest'
 'sw' = 'Southwest';

 value $mgrfmt '1' = 'Smith' '2' = 'Jones'
 '3' = 'Reveiz' '4' = 'Brown'
 '5' = 'Taylor' '6' = 'Adams'
 '7' = 'Alomar' '8' = 'Andrews'
 '9' = 'Pelfrey';

 value $deptfmt 'np1' = 'Paper'
 'np2' = 'Canned'
 'p1' = 'Meat/Dairy'
 'p2' = 'Produce';
run;

proc report data=grocery nowd
 headline headskip
 ls=66 ps=18;

 column sector manager (Sum Min Max Range Mean Std),sales;

 define manager / group format=$mgrfmt. id;
 define sector / group format=$sctrfmt.;
 define sales / format=dollar11.2 ;
 title 'Sales Statistics for All Sectors';
run;

/**/
options nodate pageno=1 linesize=64 pagesize=30
 fmtsearch=(proclib);

proc report data=grocery nowd
 headline headskip;

 title 'Sales for Individual Stores';
 column sector manager department sales Profit;
 define sector / group noprint;
 define manager / group noprint;
 define profit / computed format=dollar11.2;
 define sales / analysis sum format=dollar11.2;
 define department / group format=$deptfmt.;

 compute profit;
 if department='np1' or department='np2'
 then profit=0.4*sales.sum;
 else profit=0.25*sales.sum;
 endcomp;

 compute before _page_ / left;
 line sector $sctrfmt. ' Sector';
 line 'Store managed by ' manager $mgrfmt.;
 line ' ';
 line ' ';
 line ' ';
 endcomp;

 break after manager / ol summarize page;

 compute after manager;
 length text $ 35;
 if sales.sum lt 500 then
 text='Sales are below the target region.';
 else if sales.sum ge 500 and sales.sum lt 1000 then
 text='Sales are in the target region.';
 else if sales.sum ge 1000 then
 text='Sales exceeded goal!';
 line ' ';
 line text $35.;
 endcomp;
run;

178
1
Ç���252
3
proc sort

1
332
1
27
/************ Proc sort *************************/
/*http://analytics.ncsu.edu/sesug/2006/CC14_06.PDF is a review*/
/**/
PROC SORT data=sashelp.class
	Ascii /*Use ASCII sorting/collating sequence - defaulot on PC*/

 nodupkey /*or NODUPRECS - there is a trick here*/
 out=SortedClass
 Dupout=work.RemovedObs /*send Obs removed by noDup or NoDupkey to this file*/

	OVERWRITE /*Delete the input data set before the replacement output data set is populated.*/

 Force /* Force redundant sorting
 When you specify FORCE, PROC SORT sorts and replaces the data set
	 and destroys all user-created indexes for the data set.
	 Indexes that were created or required by integrity constraints are preserved.
	 */

 NOEQUALS /*Speed trick -Do not maintain relative order within BY groups default is equals*/
 	SORTSIZE=Max /*Speed trick -Specify the available memory */
	By Descending Height
			/*Ascending is default but you can sort by Descending var */
 Threads /*enables or prevents (NoThreads) the activation of multi-threaded sorting.*/
 /*Tagsort - Reduces temporary disk usage but is slow*/
	;
	run

376
1
�Y��252
3
proc sql

1
332
1
780

/********************** Proc SQL ****************************/
/*SQL is very powerful - read the SQL manual*****************/
/*buy the ten dollar V6 SQL manual for an quick way to learn*/
/* it is called "Getting started with SQL procedure" and is SAS #55042*/
/*

Get papers via http://www.lexjansen.com/Phuse 2008;
	
	Read An Animated Guide: Knowing SQL internal processes makes SQL easy
	http://www2.sas.com/proceedings/sugi30/101-30.pdf
 or via http://www.lexjansen.com/Phuse 2008

	Very good explanation of the where clause and indexing
	Where clause optimization is CRITICAL to making your query run quickly
	Power Indexing: A Guide to Using Indexes Effectively in Nashville Releases Diane Olson,
	http://www2.sas.com/proceedings/sugi25/25/dw/25p124.pdf

	Using the Magical Keyword "INTO:" in PROC SQL by Thiru Satchi, SUGI 27-paper71

	Storing and Using a List of Values in a Macro Variable	by Arthur L. Carpenter SUGI30- paper 028

	SQL SET OPERATORS: SO HANDY VENN YOU NEED THEM by Howard Schreier, SUGI 31-paper242

	Fuzzy Key Linkage: Robust Data Mining Methods for Real Databases by Sigurd Hermansen

	Existential Moments in Database Programming: SASÃ‚Â® PROC SQL EXISTS and NOT EXISTS Quantifiers, and More
	Sigurd W. Hermansen and Stanley E. Legum, SAS Global Forum 2008 paper 084

	How Do I Look it Up If I Cannot Spell It:An Introduction to SASÃ‚Â® Dictionary Tables
	Peter Eberhardt & Ilene Brill SUGI 31 paper 259

	SQL Step by Step: An advanced tutorial for business users by Lauren and Nelson

	WHAT WOULD I DO WITHOUT PROC SQL AND THE MACRO LANGUAGE By Jeff Abolafia SUGI31 - paper 30

	Using Data Set Options in PROC SQL by Kenneth W. Borowiak SIGI 31 paper 131

*/

/*Example 1: Housekeeping - Use SQL to create an index and delete files */
data class
 class2;
set sashelp.class;
run;

options nocenter;
Proc SQL;
create index age on class(age); 		/*simple index*/
create index ageSex on class(age,sex);	/*compound index*/
drop table work.class2;					/*delete a table*/
quit;

/*** Example 2: general SQL use***/
Proc SQL _method _tree 	/*shows optimizer execute plan*/
		/*noprint*/ /*suppresses printing*/
		number 	 /*adds row number ot output*/
		BUFFERSIZE=64M /* 65536=page size of 65536 bytes. 64k= page size of 65536 bytes. */
					 /*large values can makes SQL more likley to use hash object join*/
		feedback /*Expands query in log*/
		double /*double spaces output in list*/
		inobs=15 /*Number of obs to read -makes for quick runs - useful in QC on large tables */
		outobs=10 /*Number of obs to print or send to outfile - useful in QC*/
		FLOW=5 /*character columns longer than n are flowed to multiple lines*/
				/*- can be very useful*/
; /*First semicolon is a long way from the Proc SQL*/
 /*create table SQLExample as */ /*uncomment if you want to make a table*/
 select Name as Subject_Name
		, *
		,COUNT(*) AS SUBJ_PASSING_WHERE_FILTER
		, avg(Height) as AVERAGE_AGE
			from sashelp.class
			where sex="M"
			Group by height
			Having substr(name,1,1) NE "P"
 Order by Subject_Name DESCENDING;
;			quit;

**** Example 3 Create a macro variables** ;
data bigclass;
Set sashelp.class;
output;
output;
run;

proc SQL noprint;/*Works OK*/
select distinct name, sex, age
		into :Namelist separated by " "
			,:sexlist separated by " "
			,:AgeList separated by " "
	from bigclass;
	quit;
%put &namelist;
%put &Sexlist;
%put &Agelist;

proc SQL noprint;/*Works OK*/
select name, sex, age
		into :AllNamelist separated by " "
			,:Allsexlist separated by " "
			,:AllAgeList separated by " "
	from bigclass;
	quit;
%put &Allnamelist;
%put &AllSexlist;
%put &AllAgelist;

proc sql; /*this works but takes three passes through the data*/
/*No way to get this on one pass through the data*/
select Distinct name into :DistinctNamelist separated by " " from Bigclass;
select Distinct Sex into :DistinctSexlist separated by " " from Bigclass ;
select Distinct age into :Distinctagelist separated by " " from Bigclass ;
run;
%put &DistinctNamelist;
%put &DistinctSexlist;
%put &DistinctAgelist;

**** Example 4 Create a macro variable and use it in a scan loop** ;
proc SQL noprint; /*Has an error*/
select distinct name, sex, age
		into :Namelist /* without separated, will only store one value. See example 3*/
			,:sexlist /* without separated, will only store one value. See example 3*/
			,:AgeList separated by " "
	from SAShelp.class;
	quit;
%put &NameList;
%put &SexList;
%put &AgeList;

proc SQL noprint;
select distinct age
		into :AgeList separated by " "
	from SAShelp.class;
	quit;
%put &NameList;
%put &SexList;
%put &AgeList;

%macro scanloop;
%let counter=1;
%do %while(%scan(&AgeList,&counter,%str()) NE);
 %let ThisAge=%scan(&AgeList,&counter,%str());
 %put &ThisAge;
	proc print data=sashelp.class;
		 where age=&thisage;
		 run;
 %let counter=%eval(&counter+1);
%end;
%mend scanloop;
%scanloop;

**** Example 4 Create a bunch of macro variables and use them in a macro loop** ;
PROC SQL ;
	SELECT DISTINCT name , sex
	INTO :name1-:name99, :Gndr1-:Gndr99 /*Lazy - just make bigger than you need*/
	FROM sashelp.class;quit;
%put _user_ ;
%put &SqlObs;

	%macro WhatIS;
		Options nosymbolgen nomlogic;
		%do i=1 %to &SqlObs;
			%put On loop number &i we see:;
			%put Name&i is &&Name&i and Gender &i is &&Gndr&i;
			%put;
		%end;
	%Mend WhatIs;
	%WhatIs;

/*SQL makes six automatic macro vars(SQLOBS, SQLRC, SQLOOPS, SQLEXITCODE, SQLXRC,& SQLXMSG)*/
/*SQLOBS is # of rows that were processed by an SQL procedure statement. */
/*E.G. the # of rows that were formatted & displayed in output by a SELECT statement*/
/* the number of rows that were deleted by a DELETE statement. */
/* If an SQL view is created, then SQLOBS contains the value 0.*/

%macro showMe;
options nomprint nomlogic nosymbolgen;
%do I=1 %to &sqlobs; /*,- I use &sqlobs here to control the loop*/
 %put &&name&i has gender = &&Gndr&i ;
%end;
%mend showMe;
%showme;

*******Example 5 Applying Quotes ****************;
PROC SQL NOPRINT;
SELECT DISTINCT
	name
	,QUOTE(name)
	,quote(strip(name))
	," ' " || (name) || " ' "
	,age
	,age FORMAT Z6.2
INTO :E1 SEPARATED BY " , "
		,:E2 SEPARATED BY " , "
		,:E3 SEPARATED BY " , "
		,:E4 SEPARATED BY " , "
		,:M1 SEPARATED BY " "
		,:M2 SEPARATED BY " , "
 FROM sashelp.class(keep=name age); /*Thanks to Ken Borowiak*/
 QUIT;

%PUT &E1;
%put;
%PUT &E2;
%put;
%PUT &E3 ; /*Best??*/
%put;
%PUT &E4 ;
%put;
%PUT &M1;
%put;
%PUT &M2;
%put;

*******Example 6 the CASE statement (SQL's verson of an IF statement) ****************;
*Create some datasets with merge problems;
data LeftFile(keep= name Sex);
set sashelp.class;
if mod(_n_,3)=0;
run;

data RightFile(keep= name height);
set sashelp.class;
if mod(_n_,4)=0;
run;

options nocenter;
proc sql;
	select
		left(coalesce(l.name, r.name)) as CoalescedName
	 , case	/*Could be replaced with a coalesce but this shows use of 'IS NOT NULL' */
	 	when sex IS NOT NULL then sex
		else "?"
		end
		as CaseSex
	 ,case /*Could be replaced with a coalesce but this shows use of 'IS NULL' */
		when height IS NULL then .
		else height
		end
		as CaseHeight
	 ,case
	 	when substr(coalesce(l.name, r.name),1,1)="J" then "This is one of out many J people"
		When substr(coalesce(l.name, r.name),1,1)="B" then "This name starts with a B "
		else "Who cares about this name "
		end as comment
	from
	(select * from LeftFile) as L
	full join
	(select * from RightFile) as R
	on l.name=r.name;
	quit;

****Example 7**;
Proc sql;
create table SevenRows
(Seven_a char(5)
,Seven_B num);
proc SQL;
insert into SevenRows
values("Bob", 1)
values("Sue", 2)
values("Lee", 3)
values("Sam", 4)
values("Chi", 5)
values("Ed ", 6)
values("AJ ", 7)
;
run;

Proc sql;
create table FiveRows
(Five_A char(3)
,Five_B num);
insert into FiveRows
Set Five_a="Bob",Five_B=11
Set Five_a="Sue",Five_B=12
Set Five_a="Lee",Five_B=13
Set Five_a="Sam",Five_B=14
Set Five_a="Chi",Five_B=15
;
quit;

****Example 8 Some Joins **;
data Left_File (keep=name sex ObsNo)
	 Right_file(keep=name age ObsNo) ;
set sashelp.class;
ObsNo=_n_;
if mod(_n_,3)=0 then output Left_File;
if mod(_n_,4) in (0,1) then output Right_File;
run;

options nocenter;
proc sql;
title "Comma form of inner join - using Where syntax";
title2 "Most of the time we would use a coalesce on common varaibles";
select L.*, "*" as separator, R.*
	from
	Left_file as L
	,
	Right_file as R
	where L.name=R.name
	;

options nocenter;
proc sql;
title "Inner join form of inner join - using on syntax";
title2 "Most of the time we would use a coalesce on common variables";
title3 "SQL Joins are different from Data step joins";
title4 "The differences show up in many-to many merges";
select L.*, "*" as separator, R.*
	from
	Left_file as L
	Inner join
	Right_file as R
	on L.name=R.name
	;

options nocenter;
proc sql;
title "Left join";
title2 "Most of the time we would use a coalesce on variables in both data sets";
title3 "SQL Joins are different from Data step joins";
title4 "The differences show up in many-to many merges";
select L.*, "*" as separator, R.*
	from
	Left_file as L
	Left join
	Right_file as R
	on L.name=R.name
	;

options nocenter;
proc sql;
title "Right join";
title2 "Most of the time we would use a coalesce";
title3 "SQL Joins are different from Data step joins";
title4 "The differences show up in many-tomany merges";
select L.*, "*" as separator, R.*
	from
	Left_file as L
	Right join
	Right_file as R
	on L.name=R.name
	;

options nocenter;
proc sql;
title "Full join";
title2 "Most of the time we would use a coalesce";
title3 "SQL Joins are different from Data step joins";
title4 "The differences show up in many-to many merges";
select L.*, "*" as separator, R.*
	from
	Left_file as L
	Full join
	Right_file as R
	on L.name=R.name
	;

			******EXTRA full join example****COOL VARIABLES TO MONTOR MERGE - LIKE IN IN DATA STEP********;
 /*http://www.ats.ucla.edu/stat/sas/modules/sqlmerge.htm*/
			/*The two datasets may have records that do not match.
				Below we illustrate this by including an extra dad (Karl in famid 4)
				that does not have a corresponding family, and there are two extra families
	 (5 and 6) in the family file that do not have a corresponding dad. */

				data dads;
				 infile datalines truncover;
				 input famid name $ inc;
				datalines;
				2 Art 22000
				1 Bill 30000
				3 Paul 25000
				4 Karl 95000
				;
				run;

				data fam_income;
				 infile datalines truncover;
				 input famid faminc96 faminc97 faminc98;
				datalines;
				3 75000 76000 77000
				1 40000 40500 41000
				2 45000 45400 45800
				5 55000 65000 70000
				6 22000 24000 28000
				;
				run;

				/*Let's apply the previous example to these two datasets.
				We see that the unmatched records have been dropped out in the merged data set,
					since the where statement eliminated them. */
				proc sql;
				 create table dadkid3 as
				 select *
				 from dads, fam_income
				 where dads.famid=fam_income.famid
				 order by dads.famid;
				quit;

				proc print data=dadkid3;
				run;

				/*What if we want to keep all the records from both datasets even they do not match?
				The following proc sql does it in a more complex way.
				Here we create two new variables. One is indic,
				 an indicator variable that indicates whether an observation is from both datasets,
				 1 being from both datasets and 0 otherwise.
				Another variable is fid, a coalesce of famid from both datasets.
				This gives us more control over our datasets.
				We can decide if we have a mismatch and where the mismatch happens. */

				proc sql;
				 create table dadkid4 as
				 select *, (d.famid=i.famid) as InBothindicator,
				 (d.famid ~=.) as InDadIndicator,
				 (i.famid ~=.) as InFamIndicator,
				 coalesce(d.famid, i.famid) as family_id
				 from dads as d full join fam_income as I
 on d.famid=I.famid;
				quit;

				proc print data=dadkid4;
				run;

options nocenter;
proc sql;
title "Natural join";
title2 "Most of the time we would use a coalesce";
title3 "SQL Joins are different from Data step joins";
title4 "The differences show up in many-tomany merges";
select L.*, "*" as separator, R.*
	from
	Left_file as L
	Natural join
	Right_file as R
/*	on L.name=R.name */
	;

*** Example 9 Reflexive join *********;
*data Quality is important - in a real project check/CLEAN the mapping files *;

data HospChain;
infile datalines truncover firstobs=2;
input @1 OrgID $char5. @10 ParID $char5. @20 Rx;
/*Chn stands for Hospital Chain*/
datalines ;
1234567890123456789012345 /*Naming logic and QC Logic*/
Chn01 Chn01 100 /*Chn Stands for chain*/
Chn02 Chn02 200
Chn03 Chn03 000
Chn04 Chn04 99 /*Problem lilnking down -This chain has a hospital but no outpatient sites */
Chn05 Chn05 99 /*Problem lilnking down -This has no hospitals*/
;
run;

data Hospitals;
infile datalines truncover firstobs=2;
input @1 OrgID $char5. @10 ParID $char5. @20 Rx;
/*Hsp stands for hospital*/
datalines ;
1234567890123456789012345 /*Naming logic and QC Logic*/
Hsp1A Chn01 0 /*Hsp 1 rolls up to chain 1*/
Hsp2A Chn02 0
Hsp2B Chn02 30
Hsp3A Chn03 10
Hsp3B Chn03 20
Hsp3C Chn03 30
Hsp4E Chn04 99 /*Problem lilnking down - this Hospital has no outpatient sites*/
Hsp6E Chn06 99 /*Problem lilnking up -there is no hospital chain six*/
;
run;

data OutpatientSites;
infile datalines truncover firstobs=2;
input @1 OrgID $char5. @10 ParID $char5. @20 Rx;
/*OpS stands for Outpatient Sites*/
datalines ;
1234567890123456789012345 /*Naming logic and QC Logic*/
OpS1A Hsp1A 0 /*OpS 1 rolls up to Hsp 1 to chain 1 */
OpS1B Hsp1A 10
OpS1C Hsp1B 99 /*Deliberate Error - there is no HSP1B to roll up into*/
OpS2A Hsp2A 0
OpS2B Hsp2A 10
OpS2C Hsp2B 10
OpS3A Hsp3A 0
OpS3B Hsp3A 10
OpS3C Hsp3B 10
OpS3D Hsp3B 10
OpS3E Hsp3E 10 /*Deliberate Error - there is no HSP3E into which we can roll up*/
;
run;

/*Assemble all the files into one */
Data AllRx;
set HospChain
 Hospitals
 OutpatientSites;
run;

/*Create a mapping file - map any level to the hospital Chain - IN STAGES*/
/*we will use the mapping file to assign rx later */
Proc Sql;
Create table OpS2Hosp as
select Ops.OrgId as OrgID
 ,Ops.ParID as HospOrChainId
from AllRx as Ops
 Left Join /**/
 AllRx as Hsp
 on OPS.ParId = Hsp.OrgId
 ;

Proc Sql;
Create table OpS2Hosp2Chain as
select O2H.OrgID
 ,O2H.HospOrChainId
	 ,All.ParID as ChainID
from OpS2Hosp as O2H /*Outpatient 2 hospital*/
 Inner Join
 AllRx as All
 on O2H.HospOrChainId = All.OrgId
 order by OrgID
 ;

/*Now bring in the Rx*/
proc SQL;
Create table RxRolledUp as
select Rx.*
 ,Ru.HospOrChainId
	 ,Ru.ChainID
 from AllRx rx
 left join
 OpS2Hosp2Chain as RU
	 on Rx.OrgID= Ru.OrgID
 order by Ru.ChainID, Ru.HospOrChainId, Rx.OrgID;
;

Proc SQl;
select "the Rx file has this total for rx" , sum(rx) from allRx
union
select "the Rolled up file has this total for rx" , sum(rx) from RxRolledUp
;

/*Checked by eye as well*/
OPTIONS NOCENTER;
proc print data=RxRolledUp;

title "Chn04 Chn04 99 /*Problem lilnking down -This chain has a hospital but no outpatient sites */";
title2 "Chn05 Chn05 99 /*Problem lilnking down -This has no hospitals*/";
title4 "Hsp4E Chn04 99 /*Problem lilnking down - this Hospital has no outpatient sites*/";
title5 "Hsp6E Chn06 99 /*Problem lilnking up -there is no hospital chain six*/";
title7 "OpS1C Hsp1B 99 /*Deliberate Error - there is no HSP1B to roll up into*/";
title8 "OpS3E Hsp3E 10 /*Deliberate Error - there is no HSP3E into which we can roll up*/";
title10 "DATA QUALITY IS IMPORTANT - bad mapping files are easy to create and hard to bebug";

VAR ChainID Rx HospOrChainId ParID oRGid;

run;

/*Save time by asking SAS to check syntax -
 sometimes jobs with bad syntax can run for minutes before they return an error message */
proc sql; /*Validae is best*/
validate /*Validate does not work with create table*/
 /*create table girls as */
 select * from sashelp.class
 where sex="M";
 quit;

proc sql noexec; /*I thnink Noexec is less useful than validate*/
/*NOEXEC does not work on create table queries
 and does not give any message if the code is good*/
 /*create table girls as */
 select * from sashelp.class
 where sex="M";
 quit;

proc sql noexec;
/*NOEXEC does not work on create table queries
 and does not give any message if the code is good*/
/* create table girls as */
 select * from sashelp.class
 where Ssex="M"; /*Problem on htis line*/
 quit;

***** Example ??? Unions - Venn joins*****;
/*	Examples are coming but for now
	*google these strings "Howard Scirier" "so handy Venn " and read his paper */

data Myclass;
infile datalines firstobs=3;
input @1 name $ @9 sex $1. @12 age @19 height @28 weight;
datalines;
Name Sex Age Height	Weight
1234567890123456789012345678901234567890
Alfred M 14 69.0 112.5
Alice F 13 56.5 84.0
Carol F 14 62.8 102.5
James M 12 57.3 83.0
Jane F 12 59.8 84.5
Janet F 15 62.5 112.5
Jeffrey M 13 62.5 84.0
Joyce F 11 51.3 50.5
Louise F 12 56.3 77.0
Mary F 15 66.5 112.0
Philip M 16 72.0 150.0
Robert M 12 64.8 128.0
Thomas M 11 57.5 85.0
;
run;

options nocenter;
proc print data=Myclass;
run;

/*UNION : produces all unique rows from both queries.*/
proc sql;
create table simple as
 select "Boys " as Group, name, age, sex
 from MyClass
 where sex="M"
union
 select "GIRLS" as Group, name, age, sex
 from MyClass
 where sex="F";
quit;

proc print data=simple;
run;

/*UNION : produces all unique rows from both queries.
and wants columns in the same order*/
proc sql;
create table Boys as select Name , sex from myclass where sex="M";
create table girls as select sex, name from myclass where sex="F";

proc print data=boys;
run;
proc print data=girls;
run;

proc sql;
create table WRONG as
select * from Boys
union
Select * from girls;
;
ods listing ;
proc print data =WRONG;
run;

/*UNION :
CORRESPONDING (CORR) overlays columns that have the same name in both tables.
When used with EXCEPT, INTERSECT, and UNION, CORR suppresses columns that are not in both tables.*/
proc sql;
create table Good as
select * from Boys
union Corr
Select * from girls;
;
ods listing ;
proc print data =Good;
run;

/*
*/
proc sql;
create table Boys as select Name , Sex from myclass where sex="M";
create table girls as select Sex, Name from myclass where sex="F";

create table Union_Corr as
select * from Boys
union Corr
Select * from girls;
proc print data = Union_Corr; run;

/**/
proc sql;
create table Union_Corr2 as
select * from Boys
union Corr
Select * from boys;
proc print data = Union_Corr2; run;

/*UNION :
CORRESPONDING (CORR) overlays columns that have the same name in both tables.
 When used with EXCEPT, INTERSECT, and UNION, CORR suppresses columns that are not in both tables.
All: does not suppress duplicate rows.
 When the keyword ALL is specified, PROC SQL does not make a second pass through the data to eliminate duplicate rows.
 Thus, using ALL is more efficient than not using it.
 ALL is not allowed with the OUTER UNION operator. */
proc sql;
create table Union_Corr_all as
select * from Boys
union Corr All
Select * from Boys;
proc print data = Union_Corr_all; run;

/*EXCEPT : produces rows that are part of the first query only. */
proc sql;
create table Union_Except as
select * from Boys
Except
Select * from Boys;
proc print data = Union_Except; run;

/*
EXCEPT
CORRESPONDING (CORR) overlays columns that have the same name in both tables.
When used with EXCEPT, INTERSECT, and UNION, CORR suppresses columns that are not in both tables.
*/
proc sql;
create table Except_2 as
select * from Boys
Except corr
Select * from girls;
proc print data =Except_2; run;

/*Intersect produces rows that are common to both query results
CORRESPONDING (CORR) overlays columns that have the same name in both tables.
When used with EXCEPT, INTERSECT, and UNION, CORR suppresses columns that are not in both tables.
*/
proc sql;
create table Intersect_1 as
select * from Boys
Intersect corr
Select * from boys;
proc print data = Intersect_1; run;

/* Intersect
CORRESPONDING (CORR) overlays columns that have the same name in both tables.
When used with EXCEPT, INTERSECT, and UNION, CORR suppresses columns that are not in both tables.
*/
proc sql;
create table Intersect_2 as
select * from Boys
Intersect corr
Select * from girls;
proc print data = Intersect_2; run;

/*outer union : concatenates the query results.
CORRESPONDING (CORR) overlays columns that have the same name in both tables.
 When used with EXCEPT, INTERSECT, and UNION, CORR suppresses columns that are not in both tables.
ALL is not allowed with the OUTER UNION operator. \
*/
proc sql;
create table Outer_U as
select * from Boys
Outer Union
Select * from girls;
proc print data = Outer_U; run;

/*outer union : concatenates the query results.
CORRESPONDING (CORR) overlays columns that have the same name in both tables.
 When used with EXCEPT, INTERSECT, and UNION, CORR suppresses columns that are not in both tables.
ALL is not allowed with the OUTER UNION operator. \
*/
proc sql;
create table Outer_U_corr as
select * from Boys
Outer Union Corr
Select * from girls;
proc print data = Outer_U_corr; run;
378
1
Xu��252
3
proc sql2

1
332
1
992

/********************** Proc SQL ****************************/
/*SQL is very powerful - read the SQL manual*****************/
/*buy the ten dollar V6 SQL manual for an quick way to learn*/
/* it is called "Getting started with SQL procedure" and is SAS #55042*/
/*

Get papers via http://www.lexjansen.com/Phuse 2008;
	
	Read An Animated Guide: Knowing SQL internal processes makes SQL easy
	http://www2.sas.com/proceedings/sugi30/101-30.pdf
 or via http://www.lexjansen.com/Phuse 2008

	Very good explanation of the where clause and indexing
	Where clause optimization is CRITICAL to making your query run quickly
	Power Indexing: A Guide to Using Indexes Effectively in Nashville Releases Diane Olson,
	http://www2.sas.com/proceedings/sugi25/25/dw/25p124.pdf

	Using the Magical Keyword "INTO:" in PROC SQL by Thiru Satchi, SUGI 27-paper71

	Storing and Using a List of Values in a Macro Variable	by Arthur L. Carpenter SUGI30- paper 028

	SQL SET OPERATORS: SO HANDY VENN YOU NEED THEM by Howard Schreier, SUGI 31-paper242

	Fuzzy Key Linkage: Robust Data Mining Methods for Real Databases by Sigurd Hermansen

	Existential Moments in Database Programming: SASÃ‚Â® PROC SQL EXISTS and NOT EXISTS Quantifiers, and More
	Sigurd W. Hermansen and Stanley E. Legum, SAS Global Forum 2008 paper 084

	How Do I Look it Up If I Cannot Spell It:An Introduction to SASÃ‚Â® Dictionary Tables
	Peter Eberhardt & Ilene Brill SUGI 31 paper 259

	SQL Step by Step: An advanced tutorial for business users by Lauren and Nelson

	WHAT WOULD I DO WITHOUT PROC SQL AND THE MACRO LANGUAGE By Jeff Abolafia SUGI31 - paper 30

	Using Data Set Options in PROC SQL by Kenneth W. Borowiak SIGI 31 paper 131

*/

/*Example 1: Housekeeping - Use SQL to create an index and delete files */
data class /*make some tables to play with*/
 class2;
set sashelp.class;
run;

options nocenter;
Proc SQL;
create index age on class(age); 		/*simple index*/
create index ageSex on class(age,sex);	/*compound index*/
drop table work.class2; 		/*delete a table*/
quit;

/*drop an index*/
proc sql;
drop index ageSex from class;
quit;

/*Set option msglevel=1 to see if index was used*/
/*Some of the conditions under which the MSGLEVEL= system option applies are as follows:
 If MSGLEVEL=I, SAS writes informative messages to the SAS log about index processing.
 In general, when a WHERE expression is executed for a data set with indexes,
 the following information appears in the SAS log:
 if an index is used, a message displays that specifies the name of the index
 if an index is not used but one exists that could optimize at least one condition
 in the WHERE expression, messages provide suggestions that describe
 what you can do to influence SAS to use the index.
 For example, a message could suggest sorting the data set into index order
 or to specify more buffers.
 a message displays the IDXWHERE= or IDXNAME= data set option value
 if the setting can affect index processing.
*/
options MSGLEVEL=I ; /*Short for Message Level = Informative*/
proc sql;
title "the message that you see below is in the log and indicates an index was used";
title2 '"INFO: Index Age selected for WHERE clause optimization." ';
select *
 from class
 where age=12;
quit;
title "";

/*** Example 2: general SQL use***/
Proc SQL _method _tree 	/*shows optimizer execute plan*/
		/*noprint*/ /*suppresses printing*/
		number 	 /*adds row number ot output*/
		BUFFERSIZE=64M /* 65536=page size of 65536 bytes. 64k= page size of 65536 bytes. */
					 /*large values can makes SQL more likley to use hash object join*/
		feedback /*Expands query in log*/
		double /*double spaces output in list*/
		inobs=15 /*Number of obs to read -makes for quick runs - useful in QC on large tables */
		outobs=10 /*Number of obs to print or send to outfile - useful in QC*/
		FLOW=5 /*character columns longer than n are flowed to multiple lines*/
				/*- can be very useful*/
 ; /*First semicolon is a long way from the Proc SQL*/
 /*create table SQLExample as */ /*uncomment if you want to make a table*/
 select Name as Subject_Name
		, *
		,COUNT(*) AS SUBJ_PASSING_WHERE_FILTER
		, avg(Height) as AVERAGE_AGE
			from sashelp.class
			where sex="M"
			Group by height
			Having substr(name,1,1) NE "P";
			quit;

/**** A FEW MACRO EXAMPLES *******************/
**** Example 3 Create a macro variables** ;
data bigclass; * create table for use later;
Set sashelp.class;
output;
output;
run;

proc SQL noprint;/*Works OK*/
select distinct name, sex, age
		into :Namelist separated by " "
			,:sexlist separated by " "
			,:AgeList separated by " "
	from bigclass;
	quit;
%put &namelist;
%put &Sexlist;
%put &Agelist;

proc SQL noprint;/*Works OK*/
select name, sex, age
	into :AllNamelist separated by " "
	,:Allsexlist separated by " "
	,:AllAgeList separated by " "
	from bigclass;
	quit;
%put &Allnamelist;
%put &AllSexlist;
%put &AllAgelist;

proc sql; /*amother macro example*/
/*this works but takes three passes through the data*/
/*No way to get this on one pass through the data*/
select Distinct name into :DistinctNamelist separated by " " from Bigclass;
select Distinct Sex into :DistinctSexlist separated by " " from Bigclass ;
select Distinct age into :Distinctagelist separated by " " from Bigclass ;
run;
%put &DistinctNamelist;
%put &DistinctSexlist;
%put &DistinctAgelist;

/*macro variable creaion in SQL- illustrating error - showing need for "separated by"*/
proc SQL noprint; /*Has an error*/
select distinct name, sex, age
	into :Namelist /*Error without "separated by", will only store one value. See example 3*/
	,:sexlist /* Error without "separated by", will only store one value. See example 3*/
	,:AgeList separated by " "
	from SAShelp.class;
	quit;
%put &NameList;
%put &SexList;
%put &AgeList;

**** Example 4A Create a macro variable and use it in a scan loop** ;
/*VERY POWERFUl SAS MACRO TECHNIQUE*/

proc SQL noprint;
select distinct age
	into :AgeList separated by " "
	from SAShelp.class;
	quit;
%put &NameList;
%put &SexList;
%put &AgeList;

%macro scanloop;
%let counter=1;
%do %while(%scan(&AgeList,&counter,%str()) NE);
 %let ThisAge=%scan(&AgeList,&counter,%str());
 %put &ThisAge;
	proc print data=sashelp.class;
		 where age=&thisage;
		 run;
 %let counter=%eval(&counter+1);
%end;
%mend scanloop;
%scanloop;

**** Example 4B Create a bunch of macro variables and use them in a macro loop** ;
/*This is the "old" way of macro looping*/
PROC SQL ;
 SELECT DISTINCT name , sex
 INTO :name1-:name99, :Gndr1-:Gndr99 /*Lazy - just make bigger than you need*/
FROM sashelp.class;quit;
%put _user_ ;
%put &SqlObs;

	%macro WhatIS;
		Options nosymbolgen nomlogic;
		%do i=1 %to &SqlObs;
			%put On loop number &i we see:;
			%put Name&i is &&Name&i and Gender &i is &&Gndr&i;
			%put;
		%end;
	%Mend WhatIs;
	%WhatIs;

/*Example 6*/
/*SQL makes six automatic macro vars(SQLOBS, SQLRC, SQLOOPS, SQLEXITCODE, SQLXRC,& SQLXMSG)*/
/*SQLOBS is # of rows that were processed by an SQL procedure statement. */
/*E.G. the # of rows that were formatted & displayed in output by a SELECT statement*/
/* the number of rows that were deleted by a DELETE statement. */
/* If an SQL view is created, then SQLOBS contains the value 0.*/

%macro showMe;
options nomprint nomlogic nosymbolgen;
%do I=1 %to &sqlobs; /*,- I use &sqlobs here to control the loop*/
 %put &&name&i has gender = &&Gndr&i ;
%end;
%mend showMe;
%showme;

*******Example 7 Applying Quotes ****************;
PROC SQL NOPRINT;
SELECT DISTINCT
	name
	,QUOTE(name)
	,quote(strip(name))
	," ' " || (name) || " ' "
	,age
	,age FORMAT Z6.2
INTO :E1 SEPARATED BY " , "
		,:E2 SEPARATED BY " , "
		,:E3 SEPARATED BY " , "
		,:E4 SEPARATED BY " , "
		,:M1 SEPARATED BY " "
		,:M2 SEPARATED BY " , "
 FROM sashelp.class(keep=name age); /*Thanks to Ken Borowiak*/
 QUIT;

%PUT &E1;
%put;
%PUT &E2;
%put;
%PUT &E3 ; /*Best??*/
%put;
%PUT &E4 ;
%put;
%PUT &M1;
%put;
%PUT &M2;
%put;

*******Example 8 the CASE statement (SQL's verson of an IF statement) ****************;
*Create some datasets with merge problems;
data LeftFile(keep= name Sex);
set sashelp.class;
if mod(_n_,3)=0;
run;

data RightFile(keep= name height);
set sashelp.class;
if mod(_n_,4)=0;
run;

options nocenter;
proc sql;
 select
	left(coalesce(l.name, r.name)) as CoalescedName
 , case	/*Could be replaced with a coalesce but this shows use of 'IS NOT NULL' */
 	when sex IS NOT NULL then sex
	else "?"
	end
	as CaseSex
 ,case /*Could be replaced with a coalesce but this shows use of 'IS NULL' */
	when height IS NULL then .
	else height
	end
	as CaseHeight
 ,case
 	when substr(coalesce(l.name, r.name),1,1)="J" then "This is one of out many J people"
	When substr(coalesce(l.name, r.name),1,1)="B" then "This name starts with a B "
	else "Who cares about this name "
	end as comment
 from
 (select * from LeftFile) as L
 full join
 (select * from RightFile) as R
 on l.name=r.name;
quit;

****Example 9**;
/*Creating files using SQL - useful when learning SAS
 and you need to create a table so you can "play" with a new technique*/
Proc sql;
create table SevenRows
(Seven_a char(5)
,Seven_B num);
proc SQL;
insert into SevenRows
values("Bob", 1)
values("Sue", 2)
values("Lee", 3)
values("Sam", 4)
values("Chi", 5)
values("Ed ", 6)
values("AJ ", 7)
;
run;

Proc sql;
create table FiveRows
(Five_A char(3)
,Five_B num);
insert into FiveRows
Set Five_a="Bob",Five_B=11
Set Five_a="Sue",Five_B=12
Set Five_a="Lee",Five_B=13
Set Five_a="Sam",Five_B=14
Set Five_a="Chi",Five_B=15
;
quit;

****Example 10 Some Joins **;
/*Create a data sets for later use*/
data Left_File (keep=name sex ObsNo)
	 Right_file(keep=name age ObsNo) ;
set sashelp.class;
ObsNo=_n_;
if mod(_n_,3)=0 then output Left_File;
if mod(_n_,4) in (0,1) then output Right_File;
run;

/*Comma inner join*/
options nocenter;
proc sql;
title "Comma form of inner join - using Where syntax";
title2 "Most of the time we would use a coalesce on common varaibles";
select L.*, "*" as separator, R.*
	from
	Left_file as L
	, /*<-- here is the comma that stands for "inner join"*/
	Right_file as R
	where L.name=R.name
	;

/*Inner join form of inner join*/
options nocenter;
proc sql;
title "Inner join form of inner join - using on syntax";
title2 "Most of the time we would use a coalesce on common variables";
title3 "SQL Joins are different from Data step joins";
title4 "The differences show up in many-to many merges";
select L.*, "*" as separator, R.*
	from
	Left_file as L
	Inner join
	Right_file as R
	on L.name=R.name
	;

/*Left join*/
options nocenter;
proc sql;
title "Left join";
title2 "Most of the time we would use a coalesce on variables in both data sets";
title3 "SQL Joins are different from Data step joins";
title4 "The differences show up in many-to many merges";
select L.*, "*" as separator, R.*
	from
	Left_file as L
	Left join
	Right_file as R
	on L.name=R.name
	;

/*right join*/
options nocenter;
proc sql;
title "Right join";
title2 "Most of the time we would use a coalesce";
title3 "SQL Joins are different from Data step joins";
title4 "The differences show up in many-tomany merges";
select L.*, "*" as separator, R.*
	from
	Left_file as L
	Right join
	Right_file as R
	on L.name=R.name
	;

/*Full join*/
options nocenter;
proc sql;
title "Full join";
title2 "Most of the time we would use a coalesce";
title3 "SQL Joins are different from Data step joins";
title4 "The differences show up in many-to many merges";
select L.*, "*" as separator, R.*
	from
	Left_file as L
	Full join
	Right_file as R
	on L.name=R.name
	;

******EXTRA full join example****COOL VARIABLES TO MONTOR MERGE - LIKE IN IN DATA STEP********;
 /*http://www.ats.ucla.edu/stat/sas/modules/sqlmerge.htm*/
 /*The two datasets may have records that do not match.
 Below we illustrate this by including an extra dad (Karl in famid 4)
 that does not have a corresponding family, and there are two extra families
 (5 and 6) in the family file that do not have a corresponding dad. */

data dads;
 infile datalines truncover;
 input famid name $ inc;
datalines;
2 Art 22000
1 Bill 30000
3 Paul 25000
4 Karl 95000
;
run;

data fam_income;
 infile datalines truncover;
 input famid faminc96 faminc97 faminc98;
datalines;
3 75000 76000 77000
1 40000 40500 41000
2 45000 45400 45800
5 55000 65000 70000
6 22000 24000 28000
;
run;

/*Let's apply the previous example to these two datasets.
We see that the unmatched records have been dropped out in the merged data set,
since the where statement eliminated them. */
proc sql;
 create table dadkid3 as
 select *
 from dads, fam_income
 where dads.famid=fam_income.famid
 order by dads.famid;
quit;

proc print data=dadkid3;
run;

/*What if we want to keep all the records from both datasets even they do not match?
The following proc sql does it in a more complex way.
Here we create two new variables. One is indic,
 an indicator variable that indicates whether an observation is from both datasets,
 1 being from both datasets and 0 otherwise.
Another variable is fid, a coalesce of famid from both datasets.
This gives us more control over our datasets.
We can decide if we have a mismatch and where the mismatch happens. */
 proc sql;
 create table dadkid4 as
 select *, (d.famid=i.famid) as InBothindicator,
 (d.famid ~=.) as InDadIndicator,
 (i.famid ~=.) as InFamIndicator,
 coalesce(d.famid, i.famid) as family_id
 from dads as d
 full join fam_income as I
 on d.famid=I.famid;
quit;

proc print data=dadkid4;
run;

/*Narural join*/
options nocenter;
proc sql;
 title "Natural join";
 title2 "Most of the time we would use a coalesce";
 title3 "SQL Joins are different from Data step joins";
 title4 "The differences show up in many-tomany merges";
 select L.*
 , "*" as separator
 , R.*
 from
 Left_file as L
 Natural join
 Right_file as R
 /*	on L.name=R.name */
 ;

*** Example 11A Reflexive join *********;
** Find a person's boss**;
proc SQl;
create table employees
 (empno num
 ,job char(15)
 ,name char(15)
 , Supervisor num
);
insert into employees
values(1,"1_Pres","Goodnight",.)
values(4,"2_V.P. Sales","Kurd",1)
values(6,"2_V.P. R&D","Church",1)
values(8,"2_CFO","Lee",1)
values(14,"3_Salesman","Wang",4)
values(18,"3_Salesman","Rama",4)
values(26,"3_Chemist","Levin",6)
values(28,"3_Metalurgist","Klien",6)
values(31,"3_Acntg. Mgr","Dowd",8)
values(36,"3_Acntg. Mgr","Shu",8)
;
Select e. empno
	, e.job, e.name
	, R.name as supervisor
	, r.job as supv_job

from employees as e
 inner join
 employees as R
 on e.supervisor=r.empno
order by supv_job;

*** Example 11B reflexive join - COMPLICATED;
** Complicated business problem**;
** Hospial chains own hospitals - hospitals own clinics;
** we want to assign prescriptions (Rx) to higher levels of the organization ;
*data Quality is important - in a real project you must check/CLEAN the mapping files *;

data HospChain;
infile datalines truncover firstobs=2;
input @1 OrgID $char5. @10 ParID $char5. @20 Rx;
/*Chn stands for Hospital Chain*/
datalines ;
1234567890123456789012345 /*Naming logic and QC Logic*/
Chn01 Chn01 100 /*Chn Stands for chain*/
Chn02 Chn02 200
Chn03 Chn03 000
Chn04 Chn04 99 /*Problem lilnking down -This chain has a hospital but no outpatient sites */
Chn05 Chn05 99 /*Problem lilnking down -This has no hospitals*/
;
run;

data Hospitals;
infile datalines truncover firstobs=2;
input @1 OrgID $char5. @10 ParID $char5. @20 Rx;
/*Hsp stands for hospital*/
datalines ;
1234567890123456789012345 /*Naming logic and QC Logic*/
Hsp1A Chn01 0 /*Hsp 1 rolls up to chain 1*/
Hsp2A Chn02 0
Hsp2B Chn02 30
Hsp3A Chn03 10
Hsp3B Chn03 20
Hsp3C Chn03 30
Hsp4E Chn04 99 /*Problem lilnking down - this Hospital has no outpatient sites*/
Hsp6E Chn06 99 /*Problem lilnking up -there is no hospital chain six*/
;
run;

data OutpatientSites;
infile datalines truncover firstobs=2;
input @1 OrgID $char5. @10 ParID $char5. @20 Rx;
/*OpS stands for Outpatient Sites*/
datalines ;
1234567890123456789012345 /*Naming logic and QC Logic*/
OpS1A Hsp1A 0 /*OpS 1 rolls up to Hsp 1 to chain 1 */
OpS1B Hsp1A 10
OpS1C Hsp1B 99 /*Deliberate Error - there is no HSP1B to roll up into*/
OpS2A Hsp2A 0
OpS2B Hsp2A 10
OpS2C Hsp2B 10
OpS3A Hsp3A 0
OpS3B Hsp3A 10
OpS3C Hsp3B 10
OpS3D Hsp3B 10
OpS3E Hsp3E 10 /*Deliberate Error - there is no HSP3E into which we can roll up*/
;
run;

/*Assemble all the files into one */
Data AllRx;
set HospChain
 Hospitals
 OutpatientSites;
run;

/*Create a mapping file - map any level to the hospital Chain - IN STAGES*/
/*we will use the mapping file to assign rx later */
Proc Sql;
Create table OpS2Hosp as
select Ops.OrgId as OrgID
 ,Ops.ParID as HospOrChainId
from AllRx as Ops
 Left Join /**/
 AllRx as Hsp
 on OPS.ParId = Hsp.OrgId
 ;

Proc Sql;
Create table OpS2Hosp2Chain as
select O2H.OrgID
 ,O2H.HospOrChainId
	 ,All.ParID as ChainID
from OpS2Hosp as O2H /*Outpatient 2 hospital*/
 Inner Join
 AllRx as All
 on O2H.HospOrChainId = All.OrgId
 order by OrgID
 ;

/*Now bring in the Rx*/
proc SQL;
Create table RxRolledUp as
select Rx.*
 ,Ru.HospOrChainId
	 ,Ru.ChainID
 from AllRx rx
 left join
 OpS2Hosp2Chain as RU
	 on Rx.OrgID= Ru.OrgID
 order by Ru.ChainID, Ru.HospOrChainId, Rx.OrgID;
;

Proc SQl;
select "the Rx file has this total for rx" , sum(rx) from allRx
union
select "the Rolled up file has this total for rx" , sum(rx) from RxRolledUp
;

/*Checked by eye as well*/
OPTIONS NOCENTER;
proc print data=RxRolledUp;

title "Chn04 Chn04 99 /*Problem lilnking down -This chain has a hospital but no outpatient sites */";
title2 "Chn05 Chn05 99 /*Problem lilnking down -This has no hospitals*/";
title4 "Hsp4E Chn04 99 /*Problem lilnking down - this Hospital has no outpatient sites*/";
title5 "Hsp6E Chn06 99 /*Problem lilnking up -there is no hospital chain six*/";
title7 "OpS1C Hsp1B 99 /*Deliberate Error - there is no HSP1B to roll up into*/";
title8 "OpS3E Hsp3E 10 /*Deliberate Error - there is no HSP3E into which we can roll up*/";
title10 "DATA QUALITY IS IMPORTANT - bad mapping files are easy to create and hard to bebug";

VAR ChainID Rx HospOrChainId ParID oRGid;

run;

/*Example 12 Checking SQL syntax */
/*Check syntax with NOEXEC*/
/*Save time by asking SAS to check syntax -
 sometimes jobs with bad syntax can run for minutes before they return an error message */
proc sql; /*Validate is best*/
validate
 /*create table girls as */ /*Validate does not work with "create table"*/
 select * from sashelp.class
 where sex="M";
 quit;

/*Check syntax with NOEXEC*/
proc sql noexec; /*I think Noexec is less useful than validate*/
/*NOEXEC does not work on create table queries
 and does not give any message if the code is good*/
 /*create table girls as */
 select * from sashelp.class
 where sex="M";
 quit;

proc sql noexec;
/*NOEXEC does not work on create table queries
 and does not give any message if the code is good*/
/* create table girls as */
 select * from sashelp.class
 where Ssex="M"; /*Problem on htis line*/
 quit;

***** Example 13: Many examples of Unions - Venn joins*****;
/*	Examples are coming but for now
	*google these strings "Howard Scirier" "so handy Venn " and read his paper */

data Myclass; /*Create a table*/
infile datalines firstobs=3;
input @1 name $ @9 sex $1. @12 age @19 height @28 weight;
datalines;
Name Sex Age Height	Weight
1234567890123456789012345678901234567890
Alfred M 14 69.0 112.5
Alice F 13 56.5 84.0
Carol F 14 62.8 102.5
James M 12 57.3 83.0
Jane F 12 59.8 84.5
Janet F 15 62.5 112.5
Jeffrey M 13 62.5 84.0
Joyce F 11 51.3 50.5
Louise F 12 56.3 77.0
Mary F 15 66.5 112.0
Philip M 16 72.0 150.0
Robert M 12 64.8 128.0
Thomas M 11 57.5 85.0
;
run;

options nocenter;
proc print data=Myclass;
run;

/*UNION : produces all unique rows from both queries.*/
proc sql;
create table simple as
 select "Boys " as Group, name, age, sex
 from MyClass
 where sex="M"
union
 select "GIRLS" as Group, name, age, sex
 from MyClass
 where sex="F";
quit;

proc print data=simple;
run;

/*UNION : produces all unique rows from both queries.
and wants columns in the same order*/
proc sql;
create table Boys as select Name , sex from myclass where sex="M";
create table girls as select sex, name from myclass where sex="F";

proc print data=boys;
run;
proc print data=girls;
run;

proc sql;
create table WRONG as
select * from Boys
union
Select * from girls;
;
ods listing ;
proc print data =WRONG;
run;

/*UNION :
CORRESPONDING (CORR) overlays columns that have the same name in both tables.
When used with EXCEPT, INTERSECT, and UNION, CORR suppresses columns that are not in both tables.*/
proc sql;
create table Good as
select * from Boys
union Corr
Select * from girls;
;
ods listing ;
proc print data =Good;
run;

/**/
proc sql;
create table Boys as select Name , Sex from myclass where sex="M";
create table girls as select Sex, Name from myclass where sex="F";

create table Union_Corr as
select * from Boys
union Corr
Select * from girls;
proc print data = Union_Corr; run;

/**/
proc sql;
create table Union_Corr2 as
select * from Boys
union Corr
Select * from boys;
proc print data = Union_Corr2; run;

/*UNION :
CORRESPONDING (CORR) overlays columns that have the same name in both tables.
 When used with EXCEPT, INTERSECT, and UNION, CORR suppresses columns that are not in both tables.
All: does not suppress duplicate rows.
 When the keyword ALL is specified, PROC SQL does not make a second pass through the data to eliminate duplicate rows.
 Thus, using ALL is more efficient than not using it.
 ALL is not allowed with the OUTER UNION operator. */
proc sql;
create table Union_Corr_all as
select * from Boys
union Corr All
Select * from Boys;
proc print data = Union_Corr_all; run;

/*EXCEPT : produces rows that are part of the first query only. */
proc sql;
create table Union_Except as
select * from Boys
Except
Select * from Boys;
proc print data = Union_Except; run;

/*
EXCEPT
CORRESPONDING (CORR) overlays columns that have the same name in both tables.
When used with EXCEPT, INTERSECT, and UNION, CORR suppresses columns that are not in both tables.
*/
proc sql;
create table Except_2 as
select * from Boys
Except corr
Select * from girls;
proc print data =Except_2; run;

/*Intersect produces rows that are common to both query results
CORRESPONDING (CORR) overlays columns that have the same name in both tables.
When used with EXCEPT, INTERSECT, and UNION, CORR suppresses columns that are not in both tables.
*/
proc sql;
create table Intersect_1 as
select * from Boys
Intersect corr
Select * from boys;
proc print data = Intersect_1; run;

/* Intersect
CORRESPONDING (CORR) overlays columns that have the same name in both tables.
When used with EXCEPT, INTERSECT, and UNION, CORR suppresses columns that are not in both tables.
*/
proc sql;
create table Intersect_2 as
select * from Boys
Intersect corr
Select * from girls;
proc print data = Intersect_2; run;

/*outer union : concatenates the query results.
CORRESPONDING (CORR) overlays columns that have the same name in both tables.
 When used with EXCEPT, INTERSECT, and UNION, CORR suppresses columns that are not in both tables.
ALL is not allowed with the OUTER UNION operator. \
*/
proc sql;
create table Outer_U as
select * from Boys
Outer Union
Select * from girls;
proc print data = Outer_U; run;

/*outer union : concatenates the query results.
CORRESPONDING (CORR) overlays columns that have the same name in both tables.
 When used with EXCEPT, INTERSECT, and UNION, CORR suppresses columns that are not in both tables.
ALL is not allowed with the OUTER UNION operator. \
*/
proc sql;
create table Outer_U_corr as
select * from Boys
Outer Union Corr
Select * from girls;
proc print data = Outer_U_corr; run;

/*Example 15: Counting Duplicates and listing duplicates*/
/*often people enter the same data item twice and you need to find it*/
/*Lets find the ages for which we have more than one student*/
Options nocenter;
Proc SQL;
title "Philip is the only 16 year old in the class";
Select age
 ,count(*) as Count_of_age
from Sashelp.class
	group by age
	having Count_of_age >1;
run;

/*Lets list all the people for ares where ther are more than one student*/
Options nocenter;
Proc SQL;
title "Philip is the only 16 year old in the class";
Select SubQ.age
 ,subQ.Count_in_age
 ,"*"
 ,Class.*
 from sashelp.class as Class
 ,
 (Select age
 ,count(*) as Count_in_age
 from Sashelp.class
 group by age
 having Count_in_age >1) as SubQ
 where Class.age=SubQ.age
 order by subQ.age , Class.name;
run;
title "";

/*Example 16 totals and adding text to make the report easy to read*/
Proc SQL;
select "The table has"
 , count(*) format=2.0
 , "students with gender= "
 ,sex label="#" 		
from Sashelp.class
group by sex;
Quit;

/*Example 17A: Calcualting several statistics in one pass through the data*/
Proc SQL;/*Sex="M" is a boolean (true false) query and returns 0 (false) or 1(true)*/
 /*When SQL processes a row, if sex=M, the expression returns a 1*/
select sum(sex="M") as Count_of_Males 	
 ,sum(sex="F") as Count_of_Females
 ,sum(age in(14,15,16)) as Count_of_older_kids
from sashelp.class;
quit;

/*example 17B use of Calculated in select and calculating many numbers in one read of the file
 and putting results into macro variables*/
Proc SQl;
select count(*) as totalStu
 ,sum(sex="M") as Males /*Boolean expressoin returns 0 if false or 1 if true*/
 ,sum(sex="F") as Fmale
 ,(calculated males/ calculated TotaStu) as PctM
 ,(calculated Fmale/calculated TotalStu) as PctF
 ,sum(Height*(sex="M")) /calculated males as M_AV_HT
 ,sum(Height*(sex="F")) /calculated Fmale as F_AV_HT
into 	 :TotPats 	
 ,:CountM
 ,:CountF		
 ,:PctM
 ,:PctF	
 ,:M_av_hgt
	 ,:F_av_hgt
	from SAShelp.class; quit;

proc print data=sashelp.vmacro;
where scope ='GLOBAL' AND NAME IN('TOTPATS','COUNTM','COUNTF','PCTM','PCTF','M_AV_HGT','F_AV_HGT'); run;

/*Example 18 Distincting - Very useful but still, to me a black box*/
Proc SQL;
select COUNT(DISTINCT(SEX))
 as sexes_in_table
from SAShelp.class;
quit;

/*Example 19: QC trick: Reading &Printing a small sample of the file- Useful for QC of your work*/
/*this only reads First 3 FEMALE observations from a larger file - runs fast*/
/*Where clause says read 3 females*/
Proc SQL InObs=3;
	select * from SASHelp.class
	where sex="F";
quit;

Proc SQL InObs=3; /*No where clause reads first 3 obs*/
	select * from SASHelp.class
/*	where sex="F";*/
;
quit;

/*Example 20 - QC trick: reading the full file but only printing a few observatoins*/
/*Show me the tallest 3 students */
proc sql OutObs=3;
select *
 from sashelp.class
 order by height desc;
quit;

/*Example 21: percentages within groups*/
Proc SQL;
Select O.sex, O.age
 ,Count(*) as count_of_age_and_sex
 ,calculated count_of_age_and_sex/sex_total as Pct_of_Sex_at_this_age
from sashelp.class as O
 inner join
 (select sex,
 count(*) as sex_total
 from sashelp.class
 group by sex) as I
 on O.sex=I.sex
 group by O.sex, O.age
 order by sex, O.age, O.name;
quit;

/**********************USEFUL SQL & system OPTIONS***************************************/
/**********************USEFUL SQL & system OPTIONS***************************************/
/*Example 22: percentages within groups*/
/*flow causes the values of a variable to wrap and allows you to print long string variables*/
Data ShowFlow;
infile datalines truncover firstobs=2;
input @1 charVarL10 $char10. @15 charVarL20 $char20. @41 charVarL40 $char40.;
datalines;
1234567890123456789012345678901234567890123456789012345678901234567890
A234567890 A6789012345678901234 How are you doing today, sql student
B234567890 B678901234
211
1
'���252
3
proc standard

1
332
1
20
/*************** Proc Standard *********/
/**/
/*STANDARD standardizes variables to a given mean & std. dev.*/
data class;
	set sashelp.class;
	newHeight=height;
run;

Proc standard data=class
	out=StdClass
	mean=0 /*the new variable should have a mean of zero*/
	std=3 /*the new variable should have a Std Dev of 3*/
	print;
Var NewHeight weight;
run;

proc print data=StdClass;
sum NewHeight weight;
run;
379
1
t���252
3
proc summary

1
332
1
24
/************************* Proc Summary **************************/
/* Sumary is the same as means so also SEE PROC MEANS & Transpose************/
/*for production reports (and transposing) investigate:*/
 /*class options:EXCLUSIVE & PRELOADFMT */
 /*Summary options: CLASSDATA=, COMPLETETYPES, EXCLUSIVE, PRINTALLTYPES*/
data classic;
set sashelp.class;
if _n_ in (5,10) then age=.;
IF MOD(_N_,5)=0 then weight=.;
run;

Proc Summary data=classic 	/*PRELOADFMT*/
		missing ; /*make missing values of class variable show in output*/;
class sex /order=unformatted descending;
class age /order=freq ascending;			/*grouping variables*/
output out=SmryExample 	 				/*output data set*/
	N(age weight)=Nage Nsex 			/*Count NON-MISSING values of age and weight*/
	sum(age height)=SumAge Sum_ht 	/*Sum age and height*/
	Nmiss(Height weight)=MissHt Misswt 	/*Count missing values of Height and weight*/;
types () Sex age Sex*age; 				/*specify exactly the rows of output you desire*/
run;
proc print data=SmryExample;
title "Note the order of the variables sex and age";
run;
370
1
à���252
3
proc tabulate

1
332
1
166
/*******************Proc Tabulate**********************/
/*This is so powerful that it is hard to describe how options interact*/
/*Basics are simple, but management usually wants fancy*/

/*Classic articles are below*/

/*http://www2.sas.com/proceedings/sugi29/122-29.pdf Ray & DanB Report Vs tabulate*/
/*http://www2.sas.com/proceedings/sugi28/071-28.pdf ODS Lauren Report Vs tabulate*/
/*http://analytics.ncsu.edu/sesug/2001/P-601.pdf Drill Down Lauren*/
/*http://www2.sas.com/proceedings/sugi30/007-30.pdf Ray ODS table of contents*/

/*http://www.nesug.org/Proceedings/nesug06/dm/da05.pdf Wendi */
/*http://www2.sas.com/proceedings/forum2008/264-2008.pdf Wendi*/

/*http://www2.sas.com/proceedings/sugi27/p078-27.pdf Marianne*/
/*http://analytics.ncsu.edu/sesug/2006/SC15_06.PDF Russ*/
/*http://www2.sas.com/proceedings/sugi22/ADVTUTOR/PAPER45.PDF DanB*/
/*http://www2.sas.com/proceedings/sugi30/127-30.pdf Dan B*/
/*http://www2.sas.com/proceedings/forum2007/230-2007.pdf Jonas*/
/*http://www.nesug.org/proceedings/nesug04/pr/pr03.pdf Loise*/
/*http://www2.sas.com/proceedings/sugi30/258-30.pdf Dianne*/
/*http://www2.sas.com/proceedings/forum2008/171-2008.pdf Tom*/
/*http://www2.sas.com/proceedings/sugi22/POSTERS/PAPER223.PDF Pei,Ting Mike*/
/*http://www2.sas.com/proceedings/sugi23/Posters/p190.pdf Lisa*/
/*http://analytics.ncsu.edu/sesug/2000/p-306.pdf Carol & Joy */
/*http://www2.sas.com/proceedings/sugi31/058-31.pdf Zeros Marie & Sharon*/

/*http://www2.sas.com/proceedings/sugi29/085-29.pdf Style RayP & SandyM */
/*http://www2.sas.com/proceedings/sugi23/Posters/p211.pdf Univariate & Tab Barbara */
/*http://www2.sas.com/proceedings/sugi30/179-30.pdf E.G. Susan & Laura*/

/*Example 1: */
options ls=160;
proc tabulate data=sashelp.class missing /*Noseps *& format crams more data on a page*/;
class sex age;
var height;
table Sex="Gender of student" all
	 , age="Ages Of Students"*(height*(n*format=6.0 mean*format=6.2 max*format=6.2))
		all*(height*(n*format=2.0 mean*format=6.2 max*format=6.2))/*note layout*/
		/rts=15 /*space for cols on left*/ 	
	 box="example 1";
	 KEYLABEL
		N = "Count"
		MEAN ="Mean"
		max="Maximum"
		ALL = " Datset Total"
		;

run;

/*Example 2 */
options ls=160;
proc tabulate data=sashelp.class missing Noseps format=6.0;
class sex age height;
table
 Sex="Gender of student"*age="Ages Of Students" all
 , height all
 /rts=15 /*number of print positions available for row titles */ 	
 CONDENSE /*Print as many complete logical pages as possible on a single printed page*/
 NOCONTINUED /*No continuation message for tables spaning multiple physical pages*/
 PRINTMISS /*prints all values of class variable each time headings are printed*/
 box="example 2";
run;

/*Example 3 */
options ls=160;
proc tabulate data=sashelp.class missing Noseps format=6.0;
class sex age height;
table Sex*age all
	 , height="Counts of students by gender, age and height" all
		/rts=15 /*space for cols on left*/ 	
		INDENT=5
	 box="example 3";
run;

/*Example 4 */
%let GroupBQ1=.25;
%let GroupBQ2=.25;
%let GroupBN = 50;

data QStatExample;
	Do i=1 to &GroupAN;
		Q1Answer = (RAND('UNIFORM') LE &GroupAQ1);
		Q2Answer = (RAND('UNIFORM') LE &GroupAQ2);
		group="A";
	 Subjid = "GrA_"||Left(put(i,3.0));
		output;
	End;

	Do j=1 to &GroupBN;
		Q1Answer = (RAND('UNIFORM') LE &GroupBQ1);
		Q2Answer = (RAND('UNIFORM') LE &GroupBQ2);
	 group="B";
 Subjid = "GrB_"||Left(put(j,3.0));
		output;
	End;
run;

options ls=110;
proc tabulate data=QStatExample missing;
class Group Q1Answer Q2Answer;
table (Group all) *Q1Answer

 ,Q2Answer*(n='Number of Subjects'
 pctn<Q1Answer*Q2Answer>='Percent of Group Total')
 all*(n='Number of Subjects'
 pctn<Q1Answer >='Percent of Group Total');
run;

/* Example 5 */
options nodate pageno=1 linesize=80 pagesize=60;

 data jobclass;
 input Gender Occupation @@;
 datalines;
1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 2 1 2 1 2 1 2 1 2 1 2 1 2
1 3 1 3 1 3 1 3 1 3 1 3 1 3
1 1 1 1 1 1 1 2 1 2 1 2 1 2
1 2 1 2 1 3 1 3 1 4 1 4 1 4
1 4 1 4 1 4 1 1 1 1 1 1 1 1
1 1 1 2 1 2 1 2 1 2 1 2 1 2
1 2 1 3 1 3 1 3 1 3 1 4 1 4
1 4 1 4 1 4 1 1 1 3 2 1 2 1
2 1 2 1 2 1 2 1 2 1 2 2 2 2
2 2 2 2 2 2 2 3 2 3 2 3 2 4
2 4 2 4 2 4 2 4 2 4 2 1 2 3
2 3 2 3 2 3 2 3 2 4 2 4 2 4
2 4 2 4 2 1 2 1 2 1 2 1 2 1
2 2 2 2 2 2 2 2 2 2 2 2 2 2
2 3 2 3 2 4 2 4 2 4 2 1 2 1
2 1 2 1 2 1 2 2 2 2 2 2 2 3
2 3 2 3 2 3 2 4
;
Run;

 proc format;
 value gendfmt 1='Female'
 2='Male'
 other='*** Data Entry Error ***';
 value occupfmt 1='Technical'
 2='Manager/Supervisor'
 3='Clerical'
 4='Administrative'
 other='*** Data Entry Error ***';
run;

 proc tabulate data=jobclass format=8.2;

 class gender occupation;

 table (occupation='Job Class' all='All Jobs')
 *(n='Number of employees'*f=9.
 pctn<gender all>='Percent of row total'
 pctn<occupation all>='Percent of column total'
 pctn='Percent of total')
					,gender='Gender' all='All Employees'/ rts=50;

 format gender gendfmt. occupation occupfmt.;

 title 'Gender Distribution';
 title2 'within Job Classes';
run;
175
1
Ž���252
3
proc transpose

1
332
1
92
/************************* PROC TRANSPOSE ********************************/
/*Example 1: note the odd ordering look for the 11 year olds*/
proc Freq data=sashelp.class;
tables sex*age / list out=FromFreq;
where not (sex = "F" and Age=11); /*creates a data problem for the complettypes*/
run;

proc print data=FromFreq;
run;

proc transpose
/*the transposed variables will be in the order in which transpose sees values*/
/*if first obs does not have all values of varible being transposed output looks odd*/
/*Summary and completetypes makes for nice printout*/
		data=FromFreq
		out=OddTrSumClass
		Prefix=Age_;
		Id age;	/*helps if the data set is sorted by the ID var*/
		var count;
		by sex; /*must be sorted by sex (and age- if first sex has all ages)*/

proc print data=OddTrSumClass;
title "the column order is odd";
title2 "look for Age_11";
run;

/*Example 2: note the use of competetyes to order columns in the transpose*/
proc summary data=sashelp.class
		missing
		completetypes; /*Adds 0 freq rows to first class - helps in ordering */
class sex age;
output out=SumClass1 ;
types Sex*age;
where not (sex = "F" and Age=11); /*creates a data problem for the complettypes*/
run;

proc print data=SumClass;
title "Note: 11 year old females have freq of zero";
run;

proc transpose
/*Here, the transposed variables will be in the order in which transpose sees values*/
/*If first obs does not have all values of varible being transposed output looks odd*/
/*Summary and completetypes then a transpose make for nice printout*/
		data=Sumclass
		out=TrSumClass
		Prefix=Age_;
		Id age;	/*helps if the data set is sorted by the ID var*/
		var _freq_;
		by sex; /*must be sorted by sex (and age- if first sex has all ages)*/

proc print data=TrSumClass;
run;

/*Example 3: note the odd ordering look for the 11 year olds*/
proc format;
value PreLoad 10='10' 11='11' 12='12' 13='13' 14='14' 15='15' 16='16' 17='17';
		;
		run;

proc summary data=sashelp.class
		missing
		completetypes; /*Adds 0 freq rows to first class - helps in ordering */
class sex ;
class age /PreLoadFmt;
output out=SumClass2 ;
types Sex*age;
where not (sex = "F" and Age=11); /*creates a data problem for the complettypes*/
format age PreLoad.;
run;

proc print data=SumClass2;
title "Note: 11 year old females have freq of zero";
run;

proc transpose
/*Here, the transposed variables will be in the order in which transpose sees values*/
/*If first obs does not have all values of varible being transposed output looks odd*/
/*Summary and completetypes then a transpose make for nice printout*/
		data=Sumclass2
		out=TrSumClass2
		Prefix=Age_;
		Id age;	/*helps if the data set is sorted by the ID var*/
		var _freq_;
		by sex; /*must be sorted by sex (and age- if first sex has all ages)*/

proc print data=TrSumClass2;
run;

388
1
����252
3
proc univariate

1
332
1
22
/********************* PROC UNIVARIATE ***************************/
/* very powerful and complex - suggest a reading of the documentation */
Proc sort data=sashelp.class out=class;
	by sex;
	run;

Proc Univariate data=class ;
	by sex;
	freq age;
	histogram age height;
	QQplot height;
	ID name;
	var weight age height;
	run;

options nocenter;
ods select ExtremeObs MissingValues FREQuencies quantiles ;
Proc Univariate data=Students freq;
	run;
ods select all;

389
1
B���252
3
propcase(

1
332
1
1
propCase(string< , delimiters>)
92
1
k���252
3
prxchange(

1
332
1
1
prxChange(perlRegularExpression | regularExpressionId , times , source)
38
1
a���252
3
prxmatch(

1
332
1
1
prxMatch(perlRegularExpression | regularExpressionId , source)
39
1
>���252
3
prxparen(

1
332
1
1
prxParen(regularExpressionId)
40
1
@���252
3
prxparse(

1
332
1
1
prxParse(perlRegularExpression)
41
1
W���252
3
prxposn(

1
332
1
1
prxPosn(regularExpressionId , captureBuffer , source)
42
1
“���252
3
putc(

1
332
1
143
/*INPUTC INPUTN Putc PutN	Enables you to specify a character informat at run time.

INPUTC(source, informat<,w>)
source specifies a character constant, variable, or expression to which you want to apply the informat.
	informat is a character constant, variable, or expression that contains the character informat you want to apply to source.
	w is a numeric constant, variable, or expression that specifies a width to apply to the informat.
	Interaction: If you specify a width here, it overrides any width specification in the informat.
	Using the INPUT function is faster because you specify the informat at compile time.*/

			 proc format;
			 value typefmt 1='$groupx'
			 2='$groupy'
			 3='$groupz';
			 invalue $groupx 'positive'='agree'
			 'negative'='disagree'
			 'neutral'='notsure';
			 invalue $groupy 'positive'='accept'
			 'negative'='reject'
			 'neutral'='possible';

			 invalue $groupz 'positive'='pass'
			 'negative'='fail'
			 'neutral'='retest';
			 run;

			/*one file has several different types of tests*/
			 data TestValues;
			 input MedTest response $;
			 respinformat = put(MedTest, typefmt.);
			 word = inputc(response, respinformat);
			 datalines;
			 1 positive
			 1 negative
			 1 neutral
			 2 positive
			 2 negative
			 2 neutral
			 3 positive
			 3 negative
			 3 neutral
			 ;
			 run;
			 proc print data=TestValues;
			 run;	

/*INPUTN Function		INPUTN(source, informat<,w<,d>>)	Enables you to specify a numeric informat at run time.
 INPUTN(source, informat<,w<,d>>)
	source specifies a character constant, variable, or expression to which you want to apply the informat.
	informat is a character constant, variable or expression that contains the numeric informat you want to apply to source.
	w is a numeric constant, variable, or expression that specifies a width to apply to the informat.
		Interaction: If you specify a width here, it overrides any width specification in the informat.
	d is a numeric constant, variable, or expression that specifies the number of decimal places to use.
		Interaction: If you specify a number here, it overrides any decimal-place specification in the informat.
*/
			 proc format;
			 value readdate 1='date7.'
			 2='mmddyy8.';
			 run;

			 options yearcutoff=1920;
			 data fixdates (drop=start dateinformat);
			 length jobdesc $12;
			 input source id lname $ jobdesc $ start $;
			 dateinformat=put(source, readdate.);
			 newdate = inputn(start, dateinformat);
			 datalines;
			 1 1604 Ziminski writer 09aug90
			 1 2010 Clavell editor 26jan95
			 2 1833 Rivera writer 10/25/92
			 2 2222 Barnes proofreader 3/26/98
			 ;
			 proc print data=fixdates;
			 run;

/*
PUTC Function	PUTC(source, format.<,w>) 	Enables you to specify a character format at run time.
	source specifies a character constant, variable, or expression to which you want to apply the format.
	format. is a character constant, variable, or expression with a value that is the character format you want to apply to source.
	w is a numeric constant, variable, or expression that specifies a width to apply to the format.
		Interaction: If you specify a width here, it overrides any width specification in the format.
*/
				proc format;
				 value typefmt 1='$groupx'
				 2='$groupy'
				 3='$groupz';
				 value $groupx 'positive'='agree'
				 'negative'='disagree'
				 'neutral'='notsure ';
				 value $groupy 'positive'='accept'
				 'negative'='reject'
				 'neutral'='possible';

				 value $groupz 'positive'='pass '
				 'negative'='fail'
				 'neutral'='retest';
				run;

				data answers;
				 length word $ 8;
				 input type response $;
				 respfmt = put(type, typefmt.);
				 word = putc(response, respfmt);
				 datalines;
				1 positive
				1 negative
				1 neutral
				2 positive
				2 negative
				2 neutral
				3 positive
				3 negative
				3 neutral
				;
				proc print data=answers;
				run;

/*
PUTN Function	PUTN(source, format.<,w<,d>>) 	Enables you to specify a numeric format at run time.
	source specifies a numeric constant, variable, or expression to which you want to apply the format.
	format. is a character constant, variable, or expression with a value that is the numeric format you want to apply to source.
	w is a numeric constant, variable, or expression that specifies a width to apply to the format.
		Interaction: If you specify a width here, it overrides any width specification in the format.
	d is a numeric constant, variable, or expression that specifies the number of decimal places to use.
		Interaction: If you specify a number here, it overrides any decimal-place specification in the format.
*/

		proc format;
		 value writfmt 1='date9.'
		 2='mmddyy10.';
		run;
		data dates;
		 input number key;
		 datefmt=put(key,writfmt.);
		 date=putn(number,datefmt);
		 datalines;
		15756 1
		14552 2
		;

		proc print data=dates;run;

267
1
“���252
3
putn(

1
332
1
143
/*INPUTC INPUTN Putc PutN	Enables you to specify a character informat at run time.

INPUTC(source, informat<,w>)
source specifies a character constant, variable, or expression to which you want to apply the informat.
	informat is a character constant, variable, or expression that contains the character informat you want to apply to source.
	w is a numeric constant, variable, or expression that specifies a width to apply to the informat.
	Interaction: If you specify a width here, it overrides any width specification in the informat.
	Using the INPUT function is faster because you specify the informat at compile time.*/

			 proc format;
			 value typefmt 1='$groupx'
			 2='$groupy'
			 3='$groupz';
			 invalue $groupx 'positive'='agree'
			 'negative'='disagree'
			 'neutral'='notsure';
			 invalue $groupy 'positive'='accept'
			 'negative'='reject'
			 'neutral'='possible';

			 invalue $groupz 'positive'='pass'
			 'negative'='fail'
			 'neutral'='retest';
			 run;

			/*one file has several different types of tests*/
			 data TestValues;
			 input MedTest response $;
			 respinformat = put(MedTest, typefmt.);
			 word = inputc(response, respinformat);
			 datalines;
			 1 positive
			 1 negative
			 1 neutral
			 2 positive
			 2 negative
			 2 neutral
			 3 positive
			 3 negative
			 3 neutral
			 ;
			 run;
			 proc print data=TestValues;
			 run;	

/*INPUTN Function		INPUTN(source, informat<,w<,d>>)	Enables you to specify a numeric informat at run time.
 INPUTN(source, informat<,w<,d>>)
	source specifies a character constant, variable, or expression to which you want to apply the informat.
	informat is a character constant, variable or expression that contains the numeric informat you want to apply to source.
	w is a numeric constant, variable, or expression that specifies a width to apply to the informat.
		Interaction: If you specify a width here, it overrides any width specification in the informat.
	d is a numeric constant, variable, or expression that specifies the number of decimal places to use.
		Interaction: If you specify a number here, it overrides any decimal-place specification in the informat.
*/
			 proc format;
			 value readdate 1='date7.'
			 2='mmddyy8.';
			 run;

			 options yearcutoff=1920;
			 data fixdates (drop=start dateinformat);
			 length jobdesc $12;
			 input source id lname $ jobdesc $ start $;
			 dateinformat=put(source, readdate.);
			 newdate = inputn(start, dateinformat);
			 datalines;
			 1 1604 Ziminski writer 09aug90
			 1 2010 Clavell editor 26jan95
			 2 1833 Rivera writer 10/25/92
			 2 2222 Barnes proofreader 3/26/98
			 ;
			 proc print data=fixdates;
			 run;

/*
PUTC Function	PUTC(source, format.<,w>) 	Enables you to specify a character format at run time.
	source specifies a character constant, variable, or expression to which you want to apply the format.
	format. is a character constant, variable, or expression with a value that is the character format you want to apply to source.
	w is a numeric constant, variable, or expression that specifies a width to apply to the format.
		Interaction: If you specify a width here, it overrides any width specification in the format.
*/
				proc format;
				 value typefmt 1='$groupx'
				 2='$groupy'
				 3='$groupz';
				 value $groupx 'positive'='agree'
				 'negative'='disagree'
				 'neutral'='notsure ';
				 value $groupy 'positive'='accept'
				 'negative'='reject'
				 'neutral'='possible';

				 value $groupz 'positive'='pass '
				 'negative'='fail'
				 'neutral'='retest';
				run;

				data answers;
				 length word $ 8;
				 input type response $;
				 respfmt = put(type, typefmt.);
				 word = putc(response, respfmt);
				 datalines;
				1 positive
				1 negative
				1 neutral
				2 positive
				2 negative
				2 neutral
				3 positive
				3 negative
				3 neutral
				;
				proc print data=answers;
				run;

/*
PUTN Function	PUTN(source, format.<,w<,d>>) 	Enables you to specify a numeric format at run time.
	source specifies a numeric constant, variable, or expression to which you want to apply the format.
	format. is a character constant, variable, or expression with a value that is the numeric format you want to apply to source.
	w is a numeric constant, variable, or expression that specifies a width to apply to the format.
		Interaction: If you specify a width here, it overrides any width specification in the format.
	d is a numeric constant, variable, or expression that specifies the number of decimal places to use.
		Interaction: If you specify a number here, it overrides any decimal-place specification in the format.
*/

		proc format;
		 value writfmt 1='date9.'
		 2='mmddyy10.';
		run;
		data dates;
		 input number key;
		 datefmt=put(key,writfmt.);
		 date=putn(number,datefmt);
		 datalines;
		15756 1
		14552 2
		;

		proc print data=dates;run;

268
1
)���252
3
qtr(

1
332
1
1
qtr(sasDate)
133
1
+���252
3
quote(

1
332
1
1
quote(string)
93
1
V���252
3
ranbin(

1
332
1
108
NORMAL Function	 variate that is generated from a normal distribution with mean 0 and variance 1.
 x=RANNOR(seed)
RANBIN Function	 Returns a random variate from a binomial distribution.
RANCAU Function Returns a random variate from a Cauchy distribution.
RANPOI(seed,m)
 x=RanPoi(seed,m)
 m is a numeric constant, variable, or expression that specifies the mean
RANEXP Function Returns a random variate from an exponential distribution.
RAND (dist, parm-1,...,parm-k) Generates random numbers from a distribution that you specify.
		Distribution Argument
		Bernoulli 				x = RAND('BERNOULLI',p)
			p is a numeric probability of success.

		Beta BETA 					x = RAND('BETA',a,b)
			a is a numeric shape parameter.	Range: a > 0
			b is a numeric shape parameter.	Range: b > 0

		Binomial BINOMIAL 			x = RAND('BINOMIAL',p,n)
			x is an integer observation from the distribution

			p is a numeric probability of success.
			n is an integer parameter that counts the number of independent Bernoulli trials

		Cauchy CAUCHY 				x = RAND('CAUCHY')
			x is an observation from the distribution

		Chi-Square 					x = RAND('CHISQUARE',df)
			x is an observation from the distribution
			df is a numeric degrees of freedom parameter

		Erlang 						x = RAND('ERLANG',a)
			x is an observation from the distribution
 			a is an integer numeric shape parameter

		Exponential 				x = RAND('EXPONENTIAL')
			x is an observation from the distribution x > 0

		F 							x = RAND('F',ndf, ddf)
			x is an observation from the distribution
		 	ndf is a numeric numerator degrees of freedom parameter. Range: ndf > 0
		 	ddf is a numeric DENOMINATOR degrees of freedom parameter. Range: Ddf > 0

		Gamma 						x = RAND('GAMMA',a)
			x is an observation from the distribution 	Range: x > 0
			a is a numeric shape parameter.				Range: a > 0

		Geometric 					x = RAND('GEOMETRIC',p)
			x is an integer count that denotes the number of trials that are needed to obtain one success.
	 		p is a numeric probability of success.

		Hypergeometric				x = RAND('HYPER',N,R,n)
			x is an integer observation from the distribution
			N is an integer population size parameter. Range: N = 1, 2, ...
			R is an integer number of items in the category of interest. Range: R = 0, 1, ..., N
			n is an integer sample size parameter.Range: n = 1, 2, ..., N

	 Rannor(Lognormal 			x = RAND('LOGNORMAL')

		Negative binomial 			x = RAND('NEGBINOMIAL',p,k)
			x is an integer observation from the distribution
			k is an integer parameter that is the number of successes. However, non-integer k values are allowed as well.
					Range: k = 1, 2, ...
			p is a numeric probability of success. Range: 0 < p 1

		Normal 						x = RAND('NORMAL',<,m,s>)
			x is an observation from the normal distribution with a mean of m and a standard deviation of s
			m is the mean parameter. Default: 0
			s is the standard deviation parameter. Default: 1 Range: s> 0

		Poisson 					x = RAND('POISSON',m)
			x is an integer observation from the distribution
			M is a numeric mean parameter. Range: m > 0

		T 							x = RAND('T',df)
			x is an observation from the distribution
			df is a numeric degrees of freedom parameter. Range: df > 0

		Tabled TABLE 				x = RAND('TABLE',p1,p2, ...)
			x is an integer observation
			p1, p2, ... are numeric probability values. Range: 0 <= p1, p2, ... <= 1
			The maximum number of probability parameters depends on your operating environment

		Triangular 					x = RAND('TRIANGLE',h)
			x is an observation from the distribution where 0 h 1. Range: 0 <= x <= 1
				Note: The distribution can be easily shifted and scaled.
			h is the horizontal location of the peak of the triangle. Range: 0 h 1
		
		Uniform 					x = RAND('UNIFORM')
			x is an observation from the distribution Range: 0 < x < 1
		
		Weibull 					x = RAND('WEIBULL',a,b)
			x is an integer observation from the distribution
			a is a numeric shape parameter. Range: a > 0
			b is a numeric scale parameter. Range: b > 0

		
RANTRI Function Returns a random variate from a triangular distribution. RANTRI(seed,h)
		h is a numeric constant, variable, or expression that specifies the mode of the distribution. range: 0 < h < 1

RANUNI Function	 returns a number the uniform distribution on the interval (0,1)
 x=RANUNI(seed) ;
 If you want to change the seed value during execution,
 you must use the CALL RANUNI routine instead of the RANUNI function.

UNIFORM See RanUNI
*/
279
1
V���252
3
rancau(

1
332
1
108
NORMAL Function	 variate that is generated from a normal distribution with mean 0 and variance 1.
 x=RANNOR(seed)
RANBIN Function	 Returns a random variate from a binomial distribution.
RANCAU Function Returns a random variate from a Cauchy distribution.
RANPOI(seed,m)
 x=RanPoi(seed,m)
 m is a numeric constant, variable, or expression that specifies the mean
RANEXP Function Returns a random variate from an exponential distribution.
RAND (dist, parm-1,...,parm-k) Generates random numbers from a distribution that you specify.
		Distribution Argument
		Bernoulli 				x = RAND('BERNOULLI',p)
			p is a numeric probability of success.

		Beta BETA 					x = RAND('BETA',a,b)
			a is a numeric shape parameter.	Range: a > 0
			b is a numeric shape parameter.	Range: b > 0

		Binomial BINOMIAL 			x = RAND('BINOMIAL',p,n)
			x is an integer observation from the distribution

			p is a numeric probability of success.
			n is an integer parameter that counts the number of independent Bernoulli trials

		Cauchy CAUCHY 				x = RAND('CAUCHY')
			x is an observation from the distribution

		Chi-Square 					x = RAND('CHISQUARE',df)
			x is an observation from the distribution
			df is a numeric degrees of freedom parameter

		Erlang 						x = RAND('ERLANG',a)
			x is an observation from the distribution
 			a is an integer numeric shape parameter

		Exponential 				x = RAND('EXPONENTIAL')
			x is an observation from the distribution x > 0

		F 							x = RAND('F',ndf, ddf)
			x is an observation from the distribution
		 	ndf is a numeric numerator degrees of freedom parameter. Range: ndf > 0
		 	ddf is a numeric DENOMINATOR degrees of freedom parameter. Range: Ddf > 0

		Gamma 						x = RAND('GAMMA',a)
			x is an observation from the distribution 	Range: x > 0
			a is a numeric shape parameter.				Range: a > 0

		Geometric 					x = RAND('GEOMETRIC',p)
			x is an integer count that denotes the number of trials that are needed to obtain one success.
	 		p is a numeric probability of success.

		Hypergeometric				x = RAND('HYPER',N,R,n)
			x is an integer observation from the distribution
			N is an integer population size parameter. Range: N = 1, 2, ...
			R is an integer number of items in the category of interest. Range: R = 0, 1, ..., N
			n is an integer sample size parameter.Range: n = 1, 2, ..., N

	 Rannor(Lognormal 			x = RAND('LOGNORMAL')

		Negative binomial 			x = RAND('NEGBINOMIAL',p,k)
			x is an integer observation from the distribution
			k is an integer parameter that is the number of successes. However, non-integer k values are allowed as well.
					Range: k = 1, 2, ...
			p is a numeric probability of success. Range: 0 < p 1

		Normal 						x = RAND('NORMAL',<,m,s>)
			x is an observation from the normal distribution with a mean of m and a standard deviation of s
			m is the mean parameter. Default: 0
			s is the standard deviation parameter. Default: 1 Range: s> 0

		Poisson 					x = RAND('POISSON',m)
			x is an integer observation from the distribution
			M is a numeric mean parameter. Range: m > 0

		T 							x = RAND('T',df)
			x is an observation from the distribution
			df is a numeric degrees of freedom parameter. Range: df > 0

		Tabled TABLE 				x = RAND('TABLE',p1,p2, ...)
			x is an integer observation
			p1, p2, ... are numeric probability values. Range: 0 <= p1, p2, ... <= 1
			The maximum number of probability parameters depends on your operating environment

		Triangular 					x = RAND('TRIANGLE',h)
			x is an observation from the distribution where 0 h 1. Range: 0 <= x <= 1
				Note: The distribution can be easily shifted and scaled.
			h is the horizontal location of the peak of the triangle. Range: 0 h 1
		
		Uniform 					x = RAND('UNIFORM')
			x is an observation from the distribution Range: 0 < x < 1
		
		Weibull 					x = RAND('WEIBULL',a,b)
			x is an integer observation from the distribution
			a is a numeric shape parameter. Range: a > 0
			b is a numeric scale parameter. Range: b > 0

		
RANTRI Function Returns a random variate from a triangular distribution. RANTRI(seed,h)
		h is a numeric constant, variable, or expression that specifies the mode of the distribution. range: 0 < h < 1

RANUNI Function	 returns a number the uniform distribution on the interval (0,1)
 x=RANUNI(seed) ;
 If you want to change the seed value during execution,
 you must use the CALL RANUNI routine instead of the RANUNI function.

UNIFORM See RanUNI
*/
280
1
T���252
3
rand(

1
332
1
108
NORMAL Function	 variate that is generated from a normal distribution with mean 0 and variance 1.
 x=RANNOR(seed)
RANBIN Function	 Returns a random variate from a binomial distribution.
RANCAU Function Returns a random variate from a Cauchy distribution.
RANPOI(seed,m)
 x=RanPoi(seed,m)
 m is a numeric constant, variable, or expression that specifies the mean
RANEXP Function Returns a random variate from an exponential distribution.
RAND (dist, parm-1,...,parm-k) Generates random numbers from a distribution that you specify.
		Distribution Argument
		Bernoulli 				x = RAND('BERNOULLI',p)
			p is a numeric probability of success.

		Beta BETA 					x = RAND('BETA',a,b)
			a is a numeric shape parameter.	Range: a > 0
			b is a numeric shape parameter.	Range: b > 0

		Binomial BINOMIAL 			x = RAND('BINOMIAL',p,n)
			x is an integer observation from the distribution

			p is a numeric probability of success.
			n is an integer parameter that counts the number of independent Bernoulli trials

		Cauchy CAUCHY 				x = RAND('CAUCHY')
			x is an observation from the distribution

		Chi-Square 					x = RAND('CHISQUARE',df)
			x is an observation from the distribution
			df is a numeric degrees of freedom parameter

		Erlang 						x = RAND('ERLANG',a)
			x is an observation from the distribution
 			a is an integer numeric shape parameter

		Exponential 				x = RAND('EXPONENTIAL')
			x is an observation from the distribution x > 0

		F 							x = RAND('F',ndf, ddf)
			x is an observation from the distribution
		 	ndf is a numeric numerator degrees of freedom parameter. Range: ndf > 0
		 	ddf is a numeric DENOMINATOR degrees of freedom parameter. Range: Ddf > 0

		Gamma 						x = RAND('GAMMA',a)
			x is an observation from the distribution 	Range: x > 0
			a is a numeric shape parameter.				Range: a > 0

		Geometric 					x = RAND('GEOMETRIC',p)
			x is an integer count that denotes the number of trials that are needed to obtain one success.
	 		p is a numeric probability of success.

		Hypergeometric				x = RAND('HYPER',N,R,n)
			x is an integer observation from the distribution
			N is an integer population size parameter. Range: N = 1, 2, ...
			R is an integer number of items in the category of interest. Range: R = 0, 1, ..., N
			n is an integer sample size parameter.Range: n = 1, 2, ..., N

	 Rannor(Lognormal 			x = RAND('LOGNORMAL')

		Negative binomial 			x = RAND('NEGBINOMIAL',p,k)
			x is an integer observation from the distribution
			k is an integer parameter that is the number of successes. However, non-integer k values are allowed as well.
					Range: k = 1, 2, ...
			p is a numeric probability of success. Range: 0 < p 1

		Normal 						x = RAND('NORMAL',<,m,s>)
			x is an observation from the normal distribution with a mean of m and a standard deviation of s
			m is the mean parameter. Default: 0
			s is the standard deviation parameter. Default: 1 Range: s> 0

		Poisson 					x = RAND('POISSON',m)
			x is an integer observation from the distribution
			M is a numeric mean parameter. Range: m > 0

		T 							x = RAND('T',df)
			x is an observation from the distribution
			df is a numeric degrees of freedom parameter. Range: df > 0

		Tabled TABLE 				x = RAND('TABLE',p1,p2, ...)
			x is an integer observation
			p1, p2, ... are numeric probability values. Range: 0 <= p1, p2, ... <= 1
			The maximum number of probability parameters depends on your operating environment

		Triangular 					x = RAND('TRIANGLE',h)
			x is an observation from the distribution where 0 h 1. Range: 0 <= x <= 1
				Note: The distribution can be easily shifted and scaled.
			h is the horizontal location of the peak of the triangle. Range: 0 h 1
		
		Uniform 					x = RAND('UNIFORM')
			x is an observation from the distribution Range: 0 < x < 1
		
		Weibull 					x = RAND('WEIBULL',a,b)
			x is an integer observation from the distribution
			a is a numeric shape parameter. Range: a > 0
			b is a numeric scale parameter. Range: b > 0

		
RANTRI Function Returns a random variate from a triangular distribution. RANTRI(seed,h)
		h is a numeric constant, variable, or expression that specifies the mode of the distribution. range: 0 < h < 1

RANUNI Function	 returns a number the uniform distribution on the interval (0,1)
 x=RANUNI(seed) ;
 If you want to change the seed value during execution,
 you must use the CALL RANUNI routine instead of the RANUNI function.

UNIFORM See RanUNI
*/
281
1
V���252
3
ranexp(

1
332
1
108
NORMAL Function	 variate that is generated from a normal distribution with mean 0 and variance 1.
 x=RANNOR(seed)
RANBIN Function	 Returns a random variate from a binomial distribution.
RANCAU Function Returns a random variate from a Cauchy distribution.
RANPOI(seed,m)
 x=RanPoi(seed,m)
 m is a numeric constant, variable, or expression that specifies the mean
RANEXP Function Returns a random variate from an exponential distribution.
RAND (dist, parm-1,...,parm-k) Generates random numbers from a distribution that you specify.
		Distribution Argument
		Bernoulli 				x = RAND('BERNOULLI',p)
			p is a numeric probability of success.

		Beta BETA 					x = RAND('BETA',a,b)
			a is a numeric shape parameter.	Range: a > 0
			b is a numeric shape parameter.	Range: b > 0

		Binomial BINOMIAL 			x = RAND('BINOMIAL',p,n)
			x is an integer observation from the distribution

			p is a numeric probability of success.
			n is an integer parameter that counts the number of independent Bernoulli trials

		Cauchy CAUCHY 				x = RAND('CAUCHY')
			x is an observation from the distribution

		Chi-Square 					x = RAND('CHISQUARE',df)
			x is an observation from the distribution
			df is a numeric degrees of freedom parameter

		Erlang 						x = RAND('ERLANG',a)
			x is an observation from the distribution
 			a is an integer numeric shape parameter

		Exponential 				x = RAND('EXPONENTIAL')
			x is an observation from the distribution x > 0

		F 							x = RAND('F',ndf, ddf)
			x is an observation from the distribution
		 	ndf is a numeric numerator degrees of freedom parameter. Range: ndf > 0
		 	ddf is a numeric DENOMINATOR degrees of freedom parameter. Range: Ddf > 0

		Gamma 						x = RAND('GAMMA',a)
			x is an observation from the distribution 	Range: x > 0
			a is a numeric shape parameter.				Range: a > 0

		Geometric 					x = RAND('GEOMETRIC',p)
			x is an integer count that denotes the number of trials that are needed to obtain one success.
	 		p is a numeric probability of success.

		Hypergeometric				x = RAND('HYPER',N,R,n)
			x is an integer observation from the distribution
			N is an integer population size parameter. Range: N = 1, 2, ...
			R is an integer number of items in the category of interest. Range: R = 0, 1, ..., N
			n is an integer sample size parameter.Range: n = 1, 2, ..., N

	 Rannor(Lognormal 			x = RAND('LOGNORMAL')

		Negative binomial 			x = RAND('NEGBINOMIAL',p,k)
			x is an integer observation from the distribution
			k is an integer parameter that is the number of successes. However, non-integer k values are allowed as well.
					Range: k = 1, 2, ...
			p is a numeric probability of success. Range: 0 < p 1

		Normal 						x = RAND('NORMAL',<,m,s>)
			x is an observation from the normal distribution with a mean of m and a standard deviation of s
			m is the mean parameter. Default: 0
			s is the standard deviation parameter. Default: 1 Range: s> 0

		Poisson 					x = RAND('POISSON',m)
			x is an integer observation from the distribution
			M is a numeric mean parameter. Range: m > 0

		T 							x = RAND('T',df)
			x is an observation from the distribution
			df is a numeric degrees of freedom parameter. Range: df > 0

		Tabled TABLE 				x = RAND('TABLE',p1,p2, ...)
			x is an integer observation
			p1, p2, ... are numeric probability values. Range: 0 <= p1, p2, ... <= 1
			The maximum number of probability parameters depends on your operating environment

		Triangular 					x = RAND('TRIANGLE',h)
			x is an observation from the distribution where 0 h 1. Range: 0 <= x <= 1
				Note: The distribution can be easily shifted and scaled.
			h is the horizontal location of the peak of the triangle. Range: 0 h 1
		
		Uniform 					x = RAND('UNIFORM')
			x is an observation from the distribution Range: 0 < x < 1
		
		Weibull 					x = RAND('WEIBULL',a,b)
			x is an integer observation from the distribution
			a is a numeric shape parameter. Range: a > 0
			b is a numeric scale parameter. Range: b > 0

		
RANTRI Function Returns a random variate from a triangular distribution. RANTRI(seed,h)
		h is a numeric constant, variable, or expression that specifies the mode of the distribution. range: 0 < h < 1

RANUNI Function	 returns a number the uniform distribution on the interval (0,1)
 x=RANUNI(seed) ;
 If you want to change the seed value during execution,
 you must use the CALL RANUNI routine instead of the RANUNI function.

UNIFORM See RanUNI
*/
282
1
V���252
3
rangam(

1
332
1
108
NORMAL Function	 variate that is generated from a normal distribution with mean 0 and variance 1.
 x=RANNOR(seed)
RANBIN Function	 Returns a random variate from a binomial distribution.
RANCAU Function Returns a random variate from a Cauchy distribution.
RANPOI(seed,m)
 x=RanPoi(seed,m)
 m is a numeric constant, variable, or expression that specifies the mean
RANEXP Function Returns a random variate from an exponential distribution.
RAND (dist, parm-1,...,parm-k) Generates random numbers from a distribution that you specify.
		Distribution Argument
		Bernoulli 				x = RAND('BERNOULLI',p)
			p is a numeric probability of success.

		Beta BETA 					x = RAND('BETA',a,b)
			a is a numeric shape parameter.	Range: a > 0
			b is a numeric shape parameter.	Range: b > 0

		Binomial BINOMIAL 			x = RAND('BINOMIAL',p,n)
			x is an integer observation from the distribution

			p is a numeric probability of success.
			n is an integer parameter that counts the number of independent Bernoulli trials

		Cauchy CAUCHY 				x = RAND('CAUCHY')
			x is an observation from the distribution

		Chi-Square 					x = RAND('CHISQUARE',df)
			x is an observation from the distribution
			df is a numeric degrees of freedom parameter

		Erlang 						x = RAND('ERLANG',a)
			x is an observation from the distribution
 			a is an integer numeric shape parameter

		Exponential 				x = RAND('EXPONENTIAL')
			x is an observation from the distribution x > 0

		F 							x = RAND('F',ndf, ddf)
			x is an observation from the distribution
		 	ndf is a numeric numerator degrees of freedom parameter. Range: ndf > 0
		 	ddf is a numeric DENOMINATOR degrees of freedom parameter. Range: Ddf > 0

		Gamma 						x = RAND('GAMMA',a)
			x is an observation from the distribution 	Range: x > 0
			a is a numeric shape parameter.				Range: a > 0

		Geometric 					x = RAND('GEOMETRIC',p)
			x is an integer count that denotes the number of trials that are needed to obtain one success.
	 		p is a numeric probability of success.

		Hypergeometric				x = RAND('HYPER',N,R,n)
			x is an integer observation from the distribution
			N is an integer population size parameter. Range: N = 1, 2, ...
			R is an integer number of items in the category of interest. Range: R = 0, 1, ..., N
			n is an integer sample size parameter.Range: n = 1, 2, ..., N

	 Rannor(Lognormal 			x = RAND('LOGNORMAL')

		Negative binomial 			x = RAND('NEGBINOMIAL',p,k)
			x is an integer observation from the distribution
			k is an integer parameter that is the number of successes. However, non-integer k values are allowed as well.
					Range: k = 1, 2, ...
			p is a numeric probability of success. Range: 0 < p 1

		Normal 						x = RAND('NORMAL',<,m,s>)
			x is an observation from the normal distribution with a mean of m and a standard deviation of s
			m is the mean parameter. Default: 0
			s is the standard deviation parameter. Default: 1 Range: s> 0

		Poisson 					x = RAND('POISSON',m)
			x is an integer observation from the distribution
			M is a numeric mean parameter. Range: m > 0

		T 							x = RAND('T',df)
			x is an observation from the distribution
			df is a numeric degrees of freedom parameter. Range: df > 0

		Tabled TABLE 				x = RAND('TABLE',p1,p2, ...)
			x is an integer observation
			p1, p2, ... are numeric probability values. Range: 0 <= p1, p2, ... <= 1
			The maximum number of probability parameters depends on your operating environment

		Triangular 					x = RAND('TRIANGLE',h)
			x is an observation from the distribution where 0 h 1. Range: 0 <= x <= 1
				Note: The distribution can be easily shifted and scaled.
			h is the horizontal location of the peak of the triangle. Range: 0 h 1
		
		Uniform 					x = RAND('UNIFORM')
			x is an observation from the distribution Range: 0 < x < 1
		
		Weibull 					x = RAND('WEIBULL',a,b)
			x is an integer observation from the distribution
			a is a numeric shape parameter. Range: a > 0
			b is a numeric scale parameter. Range: b > 0

		
RANTRI Function Returns a random variate from a triangular distribution. RANTRI(seed,h)
		h is a numeric constant, variable, or expression that specifies the mode of the distribution. range: 0 < h < 1

RANUNI Function	 returns a number the uniform distribution on the interval (0,1)
 x=RANUNI(seed) ;
 If you want to change the seed value during execution,
 you must use the CALL RANUNI routine instead of the RANUNI function.

UNIFORM See RanUNI
*/
283
1
,���252
3
range(

1
332
1
60
/*Min Function*/
/*
MEAN Function MEDIAN Function CALL SLEEP Routine SLEEP Function
CEIL Function FLOOR Function INT Function ROUND Function
RANGE Function
*/
data StatExamples;
x=10;
y=200;
i=123;
j=555;
z=1;
m=.;
 put z= x= i= y= j= m=;
MAxExample1=Max(x,y,i,j,z);
 put MAxExample1= ;
MAxExample2=Max(.,x,y,i,j,z);
 put MAxExample2= ;
MinExample1=Min(x,y,i,j,z);
 put MinExample1= ;
MinExample2=Min(.,x,y,i,j,z);
 put MinExample2= ;

MeanExample1=Mean(x,y,i,j,z);
 put MeanExample1= ;
MeanExample2=Mean(x,y, . ,i,j,z);
 put MeanExample2= ;

MedianExample1=Median(x,y,i,j,z);
 put MedianExample1= ;
MedianExample2=Median(x,y, . , i,j,z);
 put MedianExample2= ;

NExample=N(x,y,i,.,.,j,z);
 put "For the function NExample=N(x,y,i,.,.,j,z); " NExample= ;
NMissExample=NMiss(x,y,i,.,.,j,z); /*Missing values*/
 put "For the function NMissExample=NMiss(x,y,i,.,.,j,z); " NMissExample= ;
SumExample=Sum(x,y,i,.,j,z,m); /*Missing values*/
 put SumExample= ;

CeilExample =ceil(5.4637);
 put "CeilExample =ceil(5.4637) " CeilExample= ;
FloorExample =Floor(5.4637);
 put "FloorExample =Floor(5.4637) " FloorExample= ;
IntExample =Int(5.4637);
 put "IntExample =Int(5.4637);" IntExample= ;

RoundExample1=Round(5.4637,0.1);
 put "RoundExample1=Round(5.4637,0.1)" RoundExample1= ;
RoundExample2=Round(5.4637,0.01);
 put "RoundExample2=Round(5.4537,0.01);" RoundExample2= ;
RoundExample3=Round(5.4637,0.001);
 put "RoundExample3=Round(5.4637,0.001);" RoundExample3=;

RangeExample1=range(x,y,i,j,z);
 put "RangeExample1=range(x,y,i,j,z);" RangeExample1=;
RangeExample2=range(.,.,x,y,i,j,z); /*Missing values*/
 put "RangeExample2=range(.,.,x,y,i,j,z);" RangeExample2=;
;
run;
184
1
)���252
3
rank(

1
332
1
1
rank(string)
94
1
V���252
3
rannor(

1
332
1
108
NORMAL Function	 variate that is generated from a normal distribution with mean 0 and variance 1.
 x=RANNOR(seed)
RANBIN Function	 Returns a random variate from a binomial distribution.
RANCAU Function Returns a random variate from a Cauchy distribution.
RANPOI(seed,m)
 x=RanPoi(seed,m)
 m is a numeric constant, variable, or expression that specifies the mean
RANEXP Function Returns a random variate from an exponential distribution.
RAND (dist, parm-1,...,parm-k) Generates random numbers from a distribution that you specify.
		Distribution Argument
		Bernoulli 				x = RAND('BERNOULLI',p)
			p is a numeric probability of success.

		Beta BETA 					x = RAND('BETA',a,b)
			a is a numeric shape parameter.	Range: a > 0
			b is a numeric shape parameter.	Range: b > 0

		Binomial BINOMIAL 			x = RAND('BINOMIAL',p,n)
			x is an integer observation from the distribution

			p is a numeric probability of success.
			n is an integer parameter that counts the number of independent Bernoulli trials

		Cauchy CAUCHY 				x = RAND('CAUCHY')
			x is an observation from the distribution

		Chi-Square 					x = RAND('CHISQUARE',df)
			x is an observation from the distribution
			df is a numeric degrees of freedom parameter

		Erlang 						x = RAND('ERLANG',a)
			x is an observation from the distribution
 			a is an integer numeric shape parameter

		Exponential 				x = RAND('EXPONENTIAL')
			x is an observation from the distribution x > 0

		F 							x = RAND('F',ndf, ddf)
			x is an observation from the distribution
		 	ndf is a numeric numerator degrees of freedom parameter. Range: ndf > 0
		 	ddf is a numeric DENOMINATOR degrees of freedom parameter. Range: Ddf > 0

		Gamma 						x = RAND('GAMMA',a)
			x is an observation from the distribution 	Range: x > 0
			a is a numeric shape parameter.				Range: a > 0

		Geometric 					x = RAND('GEOMETRIC',p)
			x is an integer count that denotes the number of trials that are needed to obtain one success.
	 		p is a numeric probability of success.

		Hypergeometric				x = RAND('HYPER',N,R,n)
			x is an integer observation from the distribution
			N is an integer population size parameter. Range: N = 1, 2, ...
			R is an integer number of items in the category of interest. Range: R = 0, 1, ..., N
			n is an integer sample size parameter.Range: n = 1, 2, ..., N

	 Rannor(Lognormal 			x = RAND('LOGNORMAL')

		Negative binomial 			x = RAND('NEGBINOMIAL',p,k)
			x is an integer observation from the distribution
			k is an integer parameter that is the number of successes. However, non-integer k values are allowed as well.
					Range: k = 1, 2, ...
			p is a numeric probability of success. Range: 0 < p 1

		Normal 						x = RAND('NORMAL',<,m,s>)
			x is an observation from the normal distribution with a mean of m and a standard deviation of s
			m is the mean parameter. Default: 0
			s is the standard deviation parameter. Default: 1 Range: s> 0

		Poisson 					x = RAND('POISSON',m)
			x is an integer observation from the distribution
			M is a numeric mean parameter. Range: m > 0

		T 							x = RAND('T',df)
			x is an observation from the distribution
			df is a numeric degrees of freedom parameter. Range: df > 0

		Tabled TABLE 				x = RAND('TABLE',p1,p2, ...)
			x is an integer observation
			p1, p2, ... are numeric probability values. Range: 0 <= p1, p2, ... <= 1
			The maximum number of probability parameters depends on your operating environment

		Triangular 					x = RAND('TRIANGLE',h)
			x is an observation from the distribution where 0 h 1. Range: 0 <= x <= 1
				Note: The distribution can be easily shifted and scaled.
			h is the horizontal location of the peak of the triangle. Range: 0 h 1
		
		Uniform 					x = RAND('UNIFORM')
			x is an observation from the distribution Range: 0 < x < 1
		
		Weibull 					x = RAND('WEIBULL',a,b)
			x is an integer observation from the distribution
			a is a numeric shape parameter. Range: a > 0
			b is a numeric scale parameter. Range: b > 0

		
RANTRI Function Returns a random variate from a triangular distribution. RANTRI(seed,h)
		h is a numeric constant, variable, or expression that specifies the mode of the distribution. range: 0 < h < 1

RANUNI Function	 returns a number the uniform distribution on the interval (0,1)
 x=RANUNI(seed) ;
 If you want to change the seed value during execution,
 you must use the CALL RANUNI routine instead of the RANUNI function.

UNIFORM See RanUNI
*/
284
1
V���252
3
ranpoi(

1
332
1
108
NORMAL Function	 variate that is generated from a normal distribution with mean 0 and variance 1.
 x=RANNOR(seed)
RANBIN Function	 Returns a random variate from a binomial distribution.
RANCAU Function Returns a random variate from a Cauchy distribution.
RANPOI(seed,m)
 x=RanPoi(seed,m)
 m is a numeric constant, variable, or expression that specifies the mean
RANEXP Function Returns a random variate from an exponential distribution.
RAND (dist, parm-1,...,parm-k) Generates random numbers from a distribution that you specify.
		Distribution Argument
		Bernoulli 				x = RAND('BERNOULLI',p)
			p is a numeric probability of success.

		Beta BETA 					x = RAND('BETA',a,b)
			a is a numeric shape parameter.	Range: a > 0
			b is a numeric shape parameter.	Range: b > 0

		Binomial BINOMIAL 			x = RAND('BINOMIAL',p,n)
			x is an integer observation from the distribution

			p is a numeric probability of success.
			n is an integer parameter that counts the number of independent Bernoulli trials

		Cauchy CAUCHY 				x = RAND('CAUCHY')
			x is an observation from the distribution

		Chi-Square 					x = RAND('CHISQUARE',df)
			x is an observation from the distribution
			df is a numeric degrees of freedom parameter

		Erlang 						x = RAND('ERLANG',a)
			x is an observation from the distribution
 			a is an integer numeric shape parameter

		Exponential 				x = RAND('EXPONENTIAL')
			x is an observation from the distribution x > 0

		F 							x = RAND('F',ndf, ddf)
			x is an observation from the distribution
		 	ndf is a numeric numerator degrees of freedom parameter. Range: ndf > 0
		 	ddf is a numeric DENOMINATOR degrees of freedom parameter. Range: Ddf > 0

		Gamma 						x = RAND('GAMMA',a)
			x is an observation from the distribution 	Range: x > 0
			a is a numeric shape parameter.				Range: a > 0

		Geometric 					x = RAND('GEOMETRIC',p)
			x is an integer count that denotes the number of trials that are needed to obtain one success.
	 		p is a numeric probability of success.

		Hypergeometric				x = RAND('HYPER',N,R,n)
			x is an integer observation from the distribution
			N is an integer population size parameter. Range: N = 1, 2, ...
			R is an integer number of items in the category of interest. Range: R = 0, 1, ..., N
			n is an integer sample size parameter.Range: n = 1, 2, ..., N

	 Rannor(Lognormal 			x = RAND('LOGNORMAL')

		Negative binomial 			x = RAND('NEGBINOMIAL',p,k)
			x is an integer observation from the distribution
			k is an integer parameter that is the number of successes. However, non-integer k values are allowed as well.
					Range: k = 1, 2, ...
			p is a numeric probability of success. Range: 0 < p 1

		Normal 						x = RAND('NORMAL',<,m,s>)
			x is an observation from the normal distribution with a mean of m and a standard deviation of s
			m is the mean parameter. Default: 0
			s is the standard deviation parameter. Default: 1 Range: s> 0

		Poisson 					x = RAND('POISSON',m)
			x is an integer observation from the distribution
			M is a numeric mean parameter. Range: m > 0

		T 							x = RAND('T',df)
			x is an observation from the distribution
			df is a numeric degrees of freedom parameter. Range: df > 0

		Tabled TABLE 				x = RAND('TABLE',p1,p2, ...)
			x is an integer observation
			p1, p2, ... are numeric probability values. Range: 0 <= p1, p2, ... <= 1
			The maximum number of probability parameters depends on your operating environment

		Triangular 					x = RAND('TRIANGLE',h)
			x is an observation from the distribution where 0 h 1. Range: 0 <= x <= 1
				Note: The distribution can be easily shifted and scaled.
			h is the horizontal location of the peak of the triangle. Range: 0 h 1
		
		Uniform 					x = RAND('UNIFORM')
			x is an observation from the distribution Range: 0 < x < 1
		
		Weibull 					x = RAND('WEIBULL',a,b)
			x is an integer observation from the distribution
			a is a numeric shape parameter. Range: a > 0
			b is a numeric scale parameter. Range: b > 0

		
RANTRI Function Returns a random variate from a triangular distribution. RANTRI(seed,h)
		h is a numeric constant, variable, or expression that specifies the mode of the distribution. range: 0 < h < 1

RANUNI Function	 returns a number the uniform distribution on the interval (0,1)
 x=RANUNI(seed) ;
 If you want to change the seed value during execution,
 you must use the CALL RANUNI routine instead of the RANUNI function.

UNIFORM See RanUNI
*/
285
1
V���252
3
rantbl(

1
332
1
108
NORMAL Function	 variate that is generated from a normal distribution with mean 0 and variance 1.
 x=RANNOR(seed)
RANBIN Function	 Returns a random variate from a binomial distribution.
RANCAU Function Returns a random variate from a Cauchy distribution.
RANPOI(seed,m)
 x=RanPoi(seed,m)
 m is a numeric constant, variable, or expression that specifies the mean
RANEXP Function Returns a random variate from an exponential distribution.
RAND (dist, parm-1,...,parm-k) Generates random numbers from a distribution that you specify.
		Distribution Argument
		Bernoulli 				x = RAND('BERNOULLI',p)
			p is a numeric probability of success.

		Beta BETA 					x = RAND('BETA',a,b)
			a is a numeric shape parameter.	Range: a > 0
			b is a numeric shape parameter.	Range: b > 0

		Binomial BINOMIAL 			x = RAND('BINOMIAL',p,n)
			x is an integer observation from the distribution

			p is a numeric probability of success.
			n is an integer parameter that counts the number of independent Bernoulli trials

		Cauchy CAUCHY 				x = RAND('CAUCHY')
			x is an observation from the distribution

		Chi-Square 					x = RAND('CHISQUARE',df)
			x is an observation from the distribution
			df is a numeric degrees of freedom parameter

		Erlang 						x = RAND('ERLANG',a)
			x is an observation from the distribution
 			a is an integer numeric shape parameter

		Exponential 				x = RAND('EXPONENTIAL')
			x is an observation from the distribution x > 0

		F 							x = RAND('F',ndf, ddf)
			x is an observation from the distribution
		 	ndf is a numeric numerator degrees of freedom parameter. Range: ndf > 0
		 	ddf is a numeric DENOMINATOR degrees of freedom parameter. Range: Ddf > 0

		Gamma 						x = RAND('GAMMA',a)
			x is an observation from the distribution 	Range: x > 0
			a is a numeric shape parameter.				Range: a > 0

		Geometric 					x = RAND('GEOMETRIC',p)
			x is an integer count that denotes the number of trials that are needed to obtain one success.
	 		p is a numeric probability of success.

		Hypergeometric				x = RAND('HYPER',N,R,n)
			x is an integer observation from the distribution
			N is an integer population size parameter. Range: N = 1, 2, ...
			R is an integer number of items in the category of interest. Range: R = 0, 1, ..., N
			n is an integer sample size parameter.Range: n = 1, 2, ..., N

	 Rannor(Lognormal 			x = RAND('LOGNORMAL')

		Negative binomial 			x = RAND('NEGBINOMIAL',p,k)
			x is an integer observation from the distribution
			k is an integer parameter that is the number of successes. However, non-integer k values are allowed as well.
					Range: k = 1, 2, ...
			p is a numeric probability of success. Range: 0 < p 1

		Normal 						x = RAND('NORMAL',<,m,s>)
			x is an observation from the normal distribution with a mean of m and a standard deviation of s
			m is the mean parameter. Default: 0
			s is the standard deviation parameter. Default: 1 Range: s> 0

		Poisson 					x = RAND('POISSON',m)
			x is an integer observation from the distribution
			M is a numeric mean parameter. Range: m > 0

		T 							x = RAND('T',df)
			x is an observation from the distribution
			df is a numeric degrees of freedom parameter. Range: df > 0

		Tabled TABLE 				x = RAND('TABLE',p1,p2, ...)
			x is an integer observation
			p1, p2, ... are numeric probability values. Range: 0 <= p1, p2, ... <= 1
			The maximum number of probability parameters depends on your operating environment

		Triangular 					x = RAND('TRIANGLE',h)
			x is an observation from the distribution where 0 h 1. Range: 0 <= x <= 1
				Note: The distribution can be easily shifted and scaled.
			h is the horizontal location of the peak of the triangle. Range: 0 h 1
		
		Uniform 					x = RAND('UNIFORM')
			x is an observation from the distribution Range: 0 < x < 1
		
		Weibull 					x = RAND('WEIBULL',a,b)
			x is an integer observation from the distribution
			a is a numeric shape parameter. Range: a > 0
			b is a numeric scale parameter. Range: b > 0

		
RANTRI Function Returns a random variate from a triangular distribution. RANTRI(seed,h)
		h is a numeric constant, variable, or expression that specifies the mode of the distribution. range: 0 < h < 1

RANUNI Function	 returns a number the uniform distribution on the interval (0,1)
 x=RANUNI(seed) ;
 If you want to change the seed value during execution,
 you must use the CALL RANUNI routine instead of the RANUNI function.

UNIFORM See RanUNI
*/
286
1
V���252
3
rantri(

1
332
1
108
NORMAL Function	 variate that is generated from a normal distribution with mean 0 and variance 1.
 x=RANNOR(seed)
RANBIN Function	 Returns a random variate from a binomial distribution.
RANCAU Function Returns a random variate from a Cauchy distribution.
RANPOI(seed,m)
 x=RanPoi(seed,m)
 m is a numeric constant, variable, or expression that specifies the mean
RANEXP Function Returns a random variate from an exponential distribution.
RAND (dist, parm-1,...,parm-k) Generates random numbers from a distribution that you specify.
		Distribution Argument
		Bernoulli 				x = RAND('BERNOULLI',p)
			p is a numeric probability of success.

		Beta BETA 					x = RAND('BETA',a,b)
			a is a numeric shape parameter.	Range: a > 0
			b is a numeric shape parameter.	Range: b > 0

		Binomial BINOMIAL 			x = RAND('BINOMIAL',p,n)
			x is an integer observation from the distribution

			p is a numeric probability of success.
			n is an integer parameter that counts the number of independent Bernoulli trials

		Cauchy CAUCHY 				x = RAND('CAUCHY')
			x is an observation from the distribution

		Chi-Square 					x = RAND('CHISQUARE',df)
			x is an observation from the distribution
			df is a numeric degrees of freedom parameter

		Erlang 						x = RAND('ERLANG',a)
			x is an observation from the distribution
 			a is an integer numeric shape parameter

		Exponential 				x = RAND('EXPONENTIAL')
			x is an observation from the distribution x > 0

		F 							x = RAND('F',ndf, ddf)
			x is an observation from the distribution
		 	ndf is a numeric numerator degrees of freedom parameter. Range: ndf > 0
		 	ddf is a numeric DENOMINATOR degrees of freedom parameter. Range: Ddf > 0

		Gamma 						x = RAND('GAMMA',a)
			x is an observation from the distribution 	Range: x > 0
			a is a numeric shape parameter.				Range: a > 0

		Geometric 					x = RAND('GEOMETRIC',p)
			x is an integer count that denotes the number of trials that are needed to obtain one success.
	 		p is a numeric probability of success.

		Hypergeometric				x = RAND('HYPER',N,R,n)
			x is an integer observation from the distribution
			N is an integer population size parameter. Range: N = 1, 2, ...
			R is an integer number of items in the category of interest. Range: R = 0, 1, ..., N
			n is an integer sample size parameter.Range: n = 1, 2, ..., N

	 Rannor(Lognormal 			x = RAND('LOGNORMAL')

		Negative binomial 			x = RAND('NEGBINOMIAL',p,k)
			x is an integer observation from the distribution
			k is an integer parameter that is the number of successes. However, non-integer k values are allowed as well.
					Range: k = 1, 2, ...
			p is a numeric probability of success. Range: 0 < p 1

		Normal 						x = RAND('NORMAL',<,m,s>)
			x is an observation from the normal distribution with a mean of m and a standard deviation of s
			m is the mean parameter. Default: 0
			s is the standard deviation parameter. Default: 1 Range: s> 0

		Poisson 					x = RAND('POISSON',m)
			x is an integer observation from the distribution
			M is a numeric mean parameter. Range: m > 0

		T 							x = RAND('T',df)
			x is an observation from the distribution
			df is a numeric degrees of freedom parameter. Range: df > 0

		Tabled TABLE 				x = RAND('TABLE',p1,p2, ...)
			x is an integer observation
			p1, p2, ... are numeric probability values. Range: 0 <= p1, p2, ... <= 1
			The maximum number of probability parameters depends on your operating environment

		Triangular 					x = RAND('TRIANGLE',h)
			x is an observation from the distribution where 0 h 1. Range: 0 <= x <= 1
				Note: The distribution can be easily shifted and scaled.
			h is the horizontal location of the peak of the triangle. Range: 0 h 1
		
		Uniform 					x = RAND('UNIFORM')
			x is an observation from the distribution Range: 0 < x < 1
		
		Weibull 					x = RAND('WEIBULL',a,b)
			x is an integer observation from the distribution
			a is a numeric shape parameter. Range: a > 0
			b is a numeric scale parameter. Range: b > 0

		
RANTRI Function Returns a random variate from a triangular distribution. RANTRI(seed,h)
		h is a numeric constant, variable, or expression that specifies the mode of the distribution. range: 0 < h < 1

RANUNI Function	 returns a number the uniform distribution on the interval (0,1)
 x=RANUNI(seed) ;
 If you want to change the seed value during execution,
 you must use the CALL RANUNI routine instead of the RANUNI function.

UNIFORM See RanUNI
*/
287
1
V���252
3
ranuni(

1
332
1
108
NORMAL Function	 variate that is generated from a normal distribution with mean 0 and variance 1.
 x=RANNOR(seed)
RANBIN Function	 Returns a random variate from a binomial distribution.
RANCAU Function Returns a random variate from a Cauchy distribution.
RANPOI(seed,m)
 x=RanPoi(seed,m)
 m is a numeric constant, variable, or expression that specifies the mean
RANEXP Function Returns a random variate from an exponential distribution.
RAND (dist, parm-1,...,parm-k) Generates random numbers from a distribution that you specify.
		Distribution Argument
		Bernoulli 				x = RAND('BERNOULLI',p)
			p is a numeric probability of success.

		Beta BETA 					x = RAND('BETA',a,b)
			a is a numeric shape parameter.	Range: a > 0
			b is a numeric shape parameter.	Range: b > 0

		Binomial BINOMIAL 			x = RAND('BINOMIAL',p,n)
			x is an integer observation from the distribution

			p is a numeric probability of success.
			n is an integer parameter that counts the number of independent Bernoulli trials

		Cauchy CAUCHY 				x = RAND('CAUCHY')
			x is an observation from the distribution

		Chi-Square 					x = RAND('CHISQUARE',df)
			x is an observation from the distribution
			df is a numeric degrees of freedom parameter

		Erlang 						x = RAND('ERLANG',a)
			x is an observation from the distribution
 			a is an integer numeric shape parameter

		Exponential 				x = RAND('EXPONENTIAL')
			x is an observation from the distribution x > 0

		F 							x = RAND('F',ndf, ddf)
			x is an observation from the distribution
		 	ndf is a numeric numerator degrees of freedom parameter. Range: ndf > 0
		 	ddf is a numeric DENOMINATOR degrees of freedom parameter. Range: Ddf > 0

		Gamma 						x = RAND('GAMMA',a)
			x is an observation from the distribution 	Range: x > 0
			a is a numeric shape parameter.				Range: a > 0

		Geometric 					x = RAND('GEOMETRIC',p)
			x is an integer count that denotes the number of trials that are needed to obtain one success.
	 		p is a numeric probability of success.

		Hypergeometric				x = RAND('HYPER',N,R,n)
			x is an integer observation from the distribution
			N is an integer population size parameter. Range: N = 1, 2, ...
			R is an integer number of items in the category of interest. Range: R = 0, 1, ..., N
			n is an integer sample size parameter.Range: n = 1, 2, ..., N

	 Rannor(Lognormal 			x = RAND('LOGNORMAL')

		Negative binomial 			x = RAND('NEGBINOMIAL',p,k)
			x is an integer observation from the distribution
			k is an integer parameter that is the number of successes. However, non-integer k values are allowed as well.
					Range: k = 1, 2, ...
			p is a numeric probability of success. Range: 0 < p 1

		Normal 						x = RAND('NORMAL',<,m,s>)
			x is an observation from the normal distribution with a mean of m and a standard deviation of s
			m is the mean parameter. Default: 0
			s is the standard deviation parameter. Default: 1 Range: s> 0

		Poisson 					x = RAND('POISSON',m)
			x is an integer observation from the distribution
			M is a numeric mean parameter. Range: m > 0

		T 							x = RAND('T',df)
			x is an observation from the distribution
			df is a numeric degrees of freedom parameter. Range: df > 0

		Tabled TABLE 				x = RAND('TABLE',p1,p2, ...)
			x is an integer observation
			p1, p2, ... are numeric probability values. Range: 0 <= p1, p2, ... <= 1
			The maximum number of probability parameters depends on your operating environment

		Triangular 					x = RAND('TRIANGLE',h)
			x is an observation from the distribution where 0 h 1. Range: 0 <= x <= 1
				Note: The distribution can be easily shifted and scaled.
			h is the horizontal location of the peak of the triangle. Range: 0 h 1
		
		Uniform 					x = RAND('UNIFORM')
			x is an observation from the distribution Range: 0 < x < 1
		
		Weibull 					x = RAND('WEIBULL',a,b)
			x is an integer observation from the distribution
			a is a numeric shape parameter. Range: a > 0
			b is a numeric scale parameter. Range: b > 0

		
RANTRI Function Returns a random variate from a triangular distribution. RANTRI(seed,h)
		h is a numeric constant, variable, or expression that specifies the mode of the distribution. range: 0 < h < 1

RANUNI Function	 returns a number the uniform distribution on the interval (0,1)
 x=RANUNI(seed) ;
 If you want to change the seed value during execution,
 you must use the CALL RANUNI routine instead of the RANUNI function.

UNIFORM See RanUNI
*/
288
1
x���252
3
repeat(

1
332
1
51
/*DATE Function DATEPART Function DATETIME Function DAY Function INTCK Function
INTNX Function MDY Function TIME Function TIMEPART Function TODAY Function*/

data _null_;
TodayDate=date(); /*Reads system clock*/
TodayToday=today(); /*Reads system clock*/
ThisInstant=DateTime(); /*Reads system clock*/
put TodayDate= TodayToday= ThisInstant=;
break=repeat("*",40);
put break;

DayFromDateTime=DatePart(ThisInstant); /*argument must be DateTime - NOT DATE*/

/*intck counts "time periods" between dates
 AND is tricky - read the documentation nad Bruce Gleason's paper*/
DaysBetween1=intck("day","1JAN00"D,"12JAN00"D);
put DaysBetween1=;
DaysBetween2=intck("day","12JAN00"D,"1JAN00"D);
put DaysBetween2=;

WeeksBetween1=intck("week","1JAN00"D,"12JAN00"D);
put WeeksBetween1=;
WeeksBetween2=intck("week","12JAN00"D,"1JAN00"D);
put WeeksBetween2=;

WeeksBetween3=intck("week","1JAN00"D,"2JAN00"D); /*ONE DAY!!!*/
put WeeksBetween3= /*for a one day difference*/;

/*INTNX advances a date AND is tricky - read the documentation*/
date1B=intnx('week','01jan95'd,5,'beginning');
put date1B / date1B Weekdate17.;

date1M=intnx('week','01jan95'd,5,'middle');
put date1M / date1M Weekdate17.;

date1E=intnx('week','01jan95'd,5,'end');
put date1E / date1E Weekdate17.;

date1S=intnx('week','01jan95'd,5,'sameday');
put date1S / date1S Weekdate17.;

date2=intnx('month','01jan95'd,5,'middle');
put date2 / date2 date7.;

date3=intnx('month','01jan95'd,5,'end');
put date3 / date3 date7.;

date4=intnx('month','01jan95'd,5,'sameday');
put date4 / date4 date7.;
run;

102
1
ý���252
3
resolve(

1
332
1
14
/*Call Symput, symget, resolve */
data _null_;
length CVarInPDV1 $6;
call symput ("DogName","spot");
call Symput ("DogAge",5);
 put "Before Symget " CVarInPDV1= ;
CVarInPDV1=symget("DogName");
 put "After Symget " CVarInPDV1= ;
NVarInPDV1=symget("DogAge");
 put "After Symget " NVarInPDV1= ;
/*I do not know anyone who uses resolve*/
 /*see The RESOLVE Function - What Is It Good For?*/
 /*http://www.nesug.org/proceedings/nesug98/code/p088.pdf*/
run;
201
1
h���252
3
reverse(

1
332
1
16
/*Reverse*/
data RevFunctn;
infile datalines truncover;
input @1 FileName $char20.;
reversed=reverse(FileName);
if left(upcase(reverse(FileName))) =:"SAS"
 then put "We found a sas file named: " Filename;
datalines;
someXLSFile.xls
someSASFile.sas
someAccessFile.mdb
;
run;

proc print data=RevFunctn;
run;
103
1
,���252
3
right(

1
332
1
1
right(string)
104
1
<���252
3
rms(

1
332
1
1
rms(number1< , number2<...>>)
185
1
,���252
3
round(

1
332
1
60
/*Min Function*/
/*
MEAN Function MEDIAN Function CALL SLEEP Routine SLEEP Function
CEIL Function FLOOR Function INT Function ROUND Function
RANGE Function
*/
data StatExamples;
x=10;
y=200;
i=123;
j=555;
z=1;
m=.;
 put z= x= i= y= j= m=;
MAxExample1=Max(x,y,i,j,z);
 put MAxExample1= ;
MAxExample2=Max(.,x,y,i,j,z);
 put MAxExample2= ;
MinExample1=Min(x,y,i,j,z);
 put MinExample1= ;
MinExample2=Min(.,x,y,i,j,z);
 put MinExample2= ;

MeanExample1=Mean(x,y,i,j,z);
 put MeanExample1= ;
MeanExample2=Mean(x,y, . ,i,j,z);
 put MeanExample2= ;

MedianExample1=Median(x,y,i,j,z);
 put MedianExample1= ;
MedianExample2=Median(x,y, . , i,j,z);
 put MedianExample2= ;

NExample=N(x,y,i,.,.,j,z);
 put "For the function NExample=N(x,y,i,.,.,j,z); " NExample= ;
NMissExample=NMiss(x,y,i,.,.,j,z); /*Missing values*/
 put "For the function NMissExample=NMiss(x,y,i,.,.,j,z); " NMissExample= ;
SumExample=Sum(x,y,i,.,j,z,m); /*Missing values*/
 put SumExample= ;

CeilExample =ceil(5.4637);
 put "CeilExample =ceil(5.4637) " CeilExample= ;
FloorExample =Floor(5.4637);
 put "FloorExample =Floor(5.4637) " FloorExample= ;
IntExample =Int(5.4637);
 put "IntExample =Int(5.4637);" IntExample= ;

RoundExample1=Round(5.4637,0.1);
 put "RoundExample1=Round(5.4637,0.1)" RoundExample1= ;
RoundExample2=Round(5.4637,0.01);
 put "RoundExample2=Round(5.4537,0.01);" RoundExample2= ;
RoundExample3=Round(5.4637,0.001);
 put "RoundExample3=Round(5.4637,0.001);" RoundExample3=;

RangeExample1=range(x,y,i,j,z);
 put "RangeExample1=range(x,y,i,j,z);" RangeExample1=;
RangeExample2=range(.,.,x,y,i,j,z); /*Missing values*/
 put "RangeExample2=range(.,.,x,y,i,j,z);" RangeExample2=;
;
run;
322
1
A���252
3
rounde(

1
332
1
1
roundE(number< , roundingUnit>)
323
1
A���252
3
roundz(

1
332
1
1
roundZ(number< , roundingUnit>)
324
1
F���252
3
rxmatch(

1
332
1
1
rxMatch(regularExpressionId , string)
45
1
:���252
3
rxparse(

1
332
1
1
rxParse(patternExpression)
46
1
t���252
3
scan(

1
332
1
50
scan(string , wordNumber< , delimiters>)
Returns the nth word from a character string.

Definition of "Delimiter" and "Word"
A delimiter is any of several characters that are used to separate words.
 You can specify the delimiters in the charlist and modifier arguments.

If you specify the Q modifier, then delimiters inside of substrings that are enclosed in quotation
 marks are ignored.

In the SCAN function, "word" refers to a substring that has all of the following characteristics:
 is bounded on the left by a delimiter or the beginning of the string
 is bounded on the right by a delimiter or the end of the string
 contains no delimiters

A word can have a length of zero if there are delimiters at the beginning or end of the string,
 or if the string contains two or more consecutive delimiters.
 However, the SCAN function ignores words that have a length of zero unless you specify the M modifier.

Note: The definition of "word" is the same in both the SCAN and COUNTW functions.

Using Default Delimiters in ASCII and EBCDIC Environments
If you use the SCAN function with only two arguments, then the default delimiters depend on whether your computer uses ASCII or EBCDIC characters.

If your computer uses ASCII characters, then the default delimiters are as follows:

blank ! $ % & () * + , - . / ; < ^

In ASCII environments that do not contain the ^ character, the SCAN function uses the ~ character instead.

If your computer uses EBCDIC characters, then the default delimiters are as follows:

blank ! $ % & () * + , - . / ; < Ã‚Â¬ | Ã‚Â¢

data firstlast;
 input String $60.;
 First_Word = scan(string, 1);
 Last_Word = scan(string, -1);
 datalines4;
Jack and Jill
& Bob & Carol & Ted & Alice &
Leonardo
! $ % & () * + , - . / ;
;;;;

proc print data=firstlast;
run;

105
1
J���252
3
scanq(

1
332
1
1
scanQ(string , wordNumber< , delimiters>)
106
1
;���252
3
sdf(

1
332
1
1
sdf('Bernoulli|beta|binomial|Cauchy|chiSquare|exponential|F|gamma|geometric|hyperGeometric|LaPlace|logistic|logNormal|negBinomial|normal|Gauss|normalMix|Pareto|Poissont|uniform|Wald|iGauss|Weibull' , quantile< , shapeLocationOrScaleParameter1< , shapeLocationOrScaleParameter2<...>>>)
258
1
µ���252
3
SECBLOCK

1
332
1
3
/***
Section __:
**/
390
1
;���252
3
second(

1
332
1
1
second(sasDateTime|sasTime)
134
1
*���252
3
sign(

1
332
1
1
sign(number)
237
1
(���252
3
sin(

1
332
1
1
sin(number)
313
1
F���252
3
skewness(

1
332
1
1
skewness(number1< , number2<...>>)
186
1
/���252
3
sleep(

1
332
1
10
/*Sleep */
data _Null_;
SleepTime=5;
BeforeSleep=time();
put "Before the " SleepTime "Second sleep the time is: " BeforeSleep= timeAMPM12.;
x=sleep(5);
AfterSleep=time();
put "After the " SleepTime "Second sleep the time is: " AfterSleep= timeAMPM12.;
;
run;
228
1
K���252
3
smallest(

1
332
1
1
smallest(k , number1< , number2<...>>)
187
1
Ð���252
3
soundex(

1
332
1
106
/*Compged Complev soundex Speedis*/
/*CompGed Returns the generalized edit distance between two strings. */
/*Soundex Encodes a string to facilitate searching. */
/*Speedis Determines the likelihood of two words matching,*/
data test;
 infile datalines missover;
 input String1 $char8. +1 String2 $char8. +1 Operation $40.;
 GED=CompGed(string1, string2);
 datalines;
baboon baboon match
baXboon baboon insert
baoon baboon delete
baXoon baboon replace
baboonX baboon append
baboo baboon truncate
babboon baboon double
babon baboon single
baobon baboon swap
bab oon baboon blank
bab,oon baboon punctuation
bXaoon baboon insert+delete
bXaYoon baboon insert+replace
bXoon baboon delete+replace
Xbaboon baboon finsert
aboon baboon trick question: swap+delete
Xaboon baboon freplace
axoon baboon fdelete+replace
axoo baboon fdelete+replace+truncate
axon baboon fdelete+replace+single
baby baboon replace+truncate*2
balloon baboon replace+insert
;

proc print data=test label;
 label GED='Generalized Edit Distance';
 var String1 String2 GED Operation;
run;

/*COMPLEV Function Returns the Levenshtein edit distance between two strings. */
options pageno=1 nodate ls=80 ps=60;

data test;
 infile datalines missover;
 input string1 $char8. string2 $char8. modifiers $char8.;
 result=CompLev(string1, string2, modifiers);
 datalines;
1234567812345678
abc abxc
ac abc
aXc abc
aXbZc abc
aXYZc abc
WaXbYcZ abc
XYZ abcdef
aBc abc
aBc AbC i
 abc abc
 abc abc l
AxC 'abc'n
AxC 'abc'n n
;

proc print data=test;
run;

/*The SOUNDEX function encodes a character string according to an algorithm that was originally developed */
/*by Margaret K. Odell and Robert C. Russel (US Patents 1261167 (1918) and 1435663 (1922)). */
/*The algorithm is described in Knuth, The Art of Computer Programming, Volume 3. (See References.) */
/*Note that the SOUNDEX algorithm is English-biased and is less useful for languages other than English.*/
data _Null_;
x=soundex('Paul');
put x;

word='amnesty';
x=soundex(word);
put x;
;
run;

/*Speedis Determines the likelihood of two words matching,
 expressed as the asymmetric spelling distance between the two words.*/
data words;
 input Operation $ Query $ Keyword $;
 Distance = spedis(query,keyword);
 Cost = distance * length(query);
 datalines;
match fuzzy fuzzy
singlet fuzy fuzzy
doublet fuuzzy fuzzy
swap fzuzy fuzzy
truncate fuzz fuzzy
append fuzzys fuzzy
delete fzzy fuzzy
insert fluzzy fuzzy
replace fizzy fuzzy
firstdel uzzy fuzzy
firstins pfuzzy fuzzy
firstrep wuzzy fuzzy
several floozy fuzzy
;

proc print data = words;
run;

107
1
Ï���252
3
spedis(

1
332
1
106
/*Compged Complev soundex Speedis*/
/*CompGed Returns the generalized edit distance between two strings. */
/*Soundex Encodes a string to facilitate searching. */
/*Speedis Determines the likelihood of two words matching,*/
data test;
 infile datalines missover;
 input String1 $char8. +1 String2 $char8. +1 Operation $40.;
 GED=CompGed(string1, string2);
 datalines;
baboon baboon match
baXboon baboon insert
baoon baboon delete
baXoon baboon replace
baboonX baboon append
baboo baboon truncate
babboon baboon double
babon baboon single
baobon baboon swap
bab oon baboon blank
bab,oon baboon punctuation
bXaoon baboon insert+delete
bXaYoon baboon insert+replace
bXoon baboon delete+replace
Xbaboon baboon finsert
aboon baboon trick question: swap+delete
Xaboon baboon freplace
axoon baboon fdelete+replace
axoo baboon fdelete+replace+truncate
axon baboon fdelete+replace+single
baby baboon replace+truncate*2
balloon baboon replace+insert
;

proc print data=test label;
 label GED='Generalized Edit Distance';
 var String1 String2 GED Operation;
run;

/*COMPLEV Function Returns the Levenshtein edit distance between two strings. */
options pageno=1 nodate ls=80 ps=60;

data test;
 infile datalines missover;
 input string1 $char8. string2 $char8. modifiers $char8.;
 result=CompLev(string1, string2, modifiers);
 datalines;
1234567812345678
abc abxc
ac abc
aXc abc
aXbZc abc
aXYZc abc
WaXbYcZ abc
XYZ abcdef
aBc abc
aBc AbC i
 abc abc
 abc abc l
AxC 'abc'n
AxC 'abc'n n
;

proc print data=test;
run;

/*The SOUNDEX function encodes a character string according to an algorithm that was originally developed */
/*by Margaret K. Odell and Robert C. Russel (US Patents 1261167 (1918) and 1435663 (1922)). */
/*The algorithm is described in Knuth, The Art of Computer Programming, Volume 3. (See References.) */
/*Note that the SOUNDEX algorithm is English-biased and is less useful for languages other than English.*/
data _Null_;
x=soundex('Paul');
put x;

word='amnesty';
x=soundex(word);
put x;
;
run;

/*Speedis Determines the likelihood of two words matching,
 expressed as the asymmetric spelling distance between the two words.*/
data words;
 input Operation $ Query $ Keyword $;
 Distance = spedis(query,keyword);
 Cost = distance * length(query);
 datalines;
match fuzzy fuzzy
singlet fuzy fuzzy
doublet fuuzzy fuzzy
swap fzuzy fuzzy
truncate fuzz fuzzy
append fuzzys fuzzy
delete fzzy fuzzy
insert fluzzy fuzzy
replace fizzy fuzzy
firstdel uzzy fuzzy
firstins pfuzzy fuzzy
firstrep wuzzy fuzzy
several floozy fuzzy
;

proc print data = words;
run;

108
1
5���252
3
sqrt(

1
332
1
1
sqRt(nonnegativeNumber)
238
1
<���252
3
std(

1
332
1
1
std(number1< , number2<...>>)
188
1
A���252
3
stderr(

1
332
1
1
stdErr(number1< , number2<...>>)
76
1
2���252
3
stfips(

1
332
1
1
stFips(postalCode)
300
1
2���252
3
stname(

1
332
1
1
stName(postalCode)
301
1
4���252
3
stnamel(

1
332
1
1
stNameL(postalCode)
302
1
]���252
3
strip(

1
332
1
18
strip(string)
Returns a character string with all leading and trailing blanks removed.

data StrippedVars;
 input string $char8.;
 original = '*' || string || '*';
 stripped = '*' || strip(string) || '*';
 datalines;
abcd
 abcd
 abcd
abcdefgh
 x y z
;

proc print data=StrippedVars;
run;

109
1
9���252
3
stuff

6
255
1
265
1
265
1
265
1
265
1
265
1
310
0
F���252
3
subpad(

1
332
1
1
subPad(string , position< , length>)
110
1
Þ���252
3
substr(

1
332
1
41
substr(string , position< , length>)
SUBSTR (left of =) Function Replaces character value contents.
SUBSTR (right of =) Function Extracts a substring from an argument.

Arguments

variable specifies a valid SAS variable name.

string specifies a character constant, variable, or expression.

position specifies a numeric constant, variable, or expression that is the beginning character position.

length specifies a numeric constant, variable, or expression that is the length of the substring to extract.

Interaction: If length is zero, a negative value,
 or larger than the length of the expression that remains in string after position,
 SAS extracts the remainder of the expression.
 SAS also sets _ERROR_ to 1 and prints a note to the log indicating that the length argument is invalid.
Tip: If you omit length, SAS extracts the remainder of the expression.

 Data _null_;
 /*Left*/
 a='KIDNAP';
 substr(a,1,3)='CAT';
 put a;

 b=a;
 substr(b,4)='TY';
 put b;

 /*Right*/
 date='06MAY1998';
 month=substr(date,3,3);
 year=substr(date,6,4);
 MoAndYr=substr(date,3);
 put @1 month= @15 year= @30 MoAndYr=;

 ;
 run;

111
1
H���252
3
substrn(

1
332
1
1
substrN(string , position< , length>)
112
1
*���252
3
sum(

1
332
1
60
/*Min Function*/
/*
MEAN Function MEDIAN Function CALL SLEEP Routine SLEEP Function
CEIL Function FLOOR Function INT Function ROUND Function
RANGE Function
*/
data StatExamples;
x=10;
y=200;
i=123;
j=555;
z=1;
m=.;
 put z= x= i= y= j= m=;
MAxExample1=Max(x,y,i,j,z);
 put MAxExample1= ;
MAxExample2=Max(.,x,y,i,j,z);
 put MAxExample2= ;
MinExample1=Min(x,y,i,j,z);
 put MinExample1= ;
MinExample2=Min(.,x,y,i,j,z);
 put MinExample2= ;

MeanExample1=Mean(x,y,i,j,z);
 put MeanExample1= ;
MeanExample2=Mean(x,y, . ,i,j,z);
 put MeanExample2= ;

MedianExample1=Median(x,y,i,j,z);
 put MedianExample1= ;
MedianExample2=Median(x,y, . , i,j,z);
 put MedianExample2= ;

NExample=N(x,y,i,.,.,j,z);
 put "For the function NExample=N(x,y,i,.,.,j,z); " NExample= ;
NMissExample=NMiss(x,y,i,.,.,j,z); /*Missing values*/
 put "For the function NMissExample=NMiss(x,y,i,.,.,j,z); " NMissExample= ;
SumExample=Sum(x,y,i,.,j,z,m); /*Missing values*/
 put SumExample= ;

CeilExample =ceil(5.4637);
 put "CeilExample =ceil(5.4637) " CeilExample= ;
FloorExample =Floor(5.4637);
 put "FloorExample =Floor(5.4637) " FloorExample= ;
IntExample =Int(5.4637);
 put "IntExample =Int(5.4637);" IntExample= ;

RoundExample1=Round(5.4637,0.1);
 put "RoundExample1=Round(5.4637,0.1)" RoundExample1= ;
RoundExample2=Round(5.4637,0.01);
 put "RoundExample2=Round(5.4537,0.01);" RoundExample2= ;
RoundExample3=Round(5.4637,0.001);
 put "RoundExample3=Round(5.4637,0.001);" RoundExample3=;

RangeExample1=range(x,y,i,j,z);
 put "RangeExample1=range(x,y,i,j,z);" RangeExample1=;
RangeExample2=range(.,.,x,y,i,j,z); /*Missing values*/
 put "RangeExample2=range(.,.,x,y,i,j,z);" RangeExample2=;
;
run;
189
1
?���252
3
symexist(

1
332
1
1
symExist('macroVariableName')
202
1
ü���252
3
symget(

1
332
1
14
/*Call Symput, symget, resolve */
data _null_;
length CVarInPDV1 $6;
call symput ("DogName","spot");
call Symput ("DogAge",5);
 put "Before Symget " CVarInPDV1= ;
CVarInPDV1=symget("DogName");
 put "After Symget " CVarInPDV1= ;
NVarInPDV1=symget("DogAge");
 put "After Symget " NVarInPDV1= ;
/*I do not know anyone who uses resolve*/
 /*see The RESOLVE Function - What Is It Good For?*/
 /*http://www.nesug.org/proceedings/nesug98/code/p088.pdf*/
run;
203
1
?���252
3
symglobl(

1
332
1
1
symGlobl('macroVariableName')
204
1
?���252
3
symlocal(

1
332
1
1
symLocal('macroVariableName')
205
1
(���252
3
tan(

1
332
1
1
tan(number)
314
1
v���252
3
time(

1
332
1
51
/*DATE Function DATEPART Function DATETIME Function DAY Function INTCK Function
INTNX Function MDY Function TIME Function TIMEPART Function TODAY Function*/

data _null_;
TodayDate=date(); /*Reads system clock*/
TodayToday=today(); /*Reads system clock*/
ThisInstant=DateTime(); /*Reads system clock*/
put TodayDate= TodayToday= ThisInstant=;
break=repeat("*",40);
put break;

DayFromDateTime=DatePart(ThisInstant); /*argument must be DateTime - NOT DATE*/

/*intck counts "time periods" between dates
 AND is tricky - read the documentation nad Bruce Gleason's paper*/
DaysBetween1=intck("day","1JAN00"D,"12JAN00"D);
put DaysBetween1=;
DaysBetween2=intck("day","12JAN00"D,"1JAN00"D);
put DaysBetween2=;

WeeksBetween1=intck("week","1JAN00"D,"12JAN00"D);
put WeeksBetween1=;
WeeksBetween2=intck("week","12JAN00"D,"1JAN00"D);
put WeeksBetween2=;

WeeksBetween3=intck("week","1JAN00"D,"2JAN00"D); /*ONE DAY!!!*/
put WeeksBetween3= /*for a one day difference*/;

/*INTNX advances a date AND is tricky - read the documentation*/
date1B=intnx('week','01jan95'd,5,'beginning');
put date1B / date1B Weekdate17.;

date1M=intnx('week','01jan95'd,5,'middle');
put date1M / date1M Weekdate17.;

date1E=intnx('week','01jan95'd,5,'end');
put date1E / date1E Weekdate17.;

date1S=intnx('week','01jan95'd,5,'sameday');
put date1S / date1S Weekdate17.;

date2=intnx('month','01jan95'd,5,'middle');
put date2 / date2 date7.;

date3=intnx('month','01jan95'd,5,'end');
put date3 / date3 date7.;

date4=intnx('month','01jan95'd,5,'sameday');
put date4 / date4 date7.;
run;

135
1
z���252
3
timepart(

1
332
1
51
/*DATE Function DATEPART Function DATETIME Function DAY Function INTCK Function
INTNX Function MDY Function TIME Function TIMEPART Function TODAY Function*/

data _null_;
TodayDate=date(); /*Reads system clock*/
TodayToday=today(); /*Reads system clock*/
ThisInstant=DateTime(); /*Reads system clock*/
put TodayDate= TodayToday= ThisInstant=;
break=repeat("*",40);
put break;

DayFromDateTime=DatePart(ThisInstant); /*argument must be DateTime - NOT DATE*/

/*intck counts "time periods" between dates
 AND is tricky - read the documentation nad Bruce Gleason's paper*/
DaysBetween1=intck("day","1JAN00"D,"12JAN00"D);
put DaysBetween1=;
DaysBetween2=intck("day","12JAN00"D,"1JAN00"D);
put DaysBetween2=;

WeeksBetween1=intck("week","1JAN00"D,"12JAN00"D);
put WeeksBetween1=;
WeeksBetween2=intck("week","12JAN00"D,"1JAN00"D);
put WeeksBetween2=;

WeeksBetween3=intck("week","1JAN00"D,"2JAN00"D); /*ONE DAY!!!*/
put WeeksBetween3= /*for a one day difference*/;

/*INTNX advances a date AND is tricky - read the documentation*/
date1B=intnx('week','01jan95'd,5,'beginning');
put date1B / date1B Weekdate17.;

date1M=intnx('week','01jan95'd,5,'middle');
put date1M / date1M Weekdate17.;

date1E=intnx('week','01jan95'd,5,'end');
put date1E / date1E Weekdate17.;

date1S=intnx('week','01jan95'd,5,'sameday');
put date1S / date1S Weekdate17.;

date2=intnx('month','01jan95'd,5,'middle');
put date2 / date2 date7.;

date3=intnx('month','01jan95'd,5,'end');
put date3 / date3 date7.;

date4=intnx('month','01jan95'd,5,'sameday');
put date4 / date4 date7.;
run;

136
1
[���252
3
tinv(

1
332
1
1
tInv(numericProbability , degreesOfFreedom , nonCentrality)
265
1
Z���252
3
tnonct(

1
332
1
1
tNonct(numericVariable , degreesOfFreedom , probability)
239
1
w���252
3
today(

1
332
1
51
/*DATE Function DATEPART Function DATETIME Function DAY Function INTCK Function
INTNX Function MDY Function TIME Function TIMEPART Function TODAY Function*/

data _null_;
TodayDate=date(); /*Reads system clock*/
TodayToday=today(); /*Reads system clock*/
ThisInstant=DateTime(); /*Reads system clock*/
put TodayDate= TodayToday= ThisInstant=;
break=repeat("*",40);
put break;

DayFromDateTime=DatePart(ThisInstant); /*argument must be DateTime - NOT DATE*/

/*intck counts "time periods" between dates
 AND is tricky - read the documentation nad Bruce Gleason's paper*/
DaysBetween1=intck("day","1JAN00"D,"12JAN00"D);
put DaysBetween1=;
DaysBetween2=intck("day","12JAN00"D,"1JAN00"D);
put DaysBetween2=;

WeeksBetween1=intck("week","1JAN00"D,"12JAN00"D);
put WeeksBetween1=;
WeeksBetween2=intck("week","12JAN00"D,"1JAN00"D);
put WeeksBetween2=;

WeeksBetween3=intck("week","1JAN00"D,"2JAN00"D); /*ONE DAY!!!*/
put WeeksBetween3= /*for a one day difference*/;

/*INTNX advances a date AND is tricky - read the documentation*/
date1B=intnx('week','01jan95'd,5,'beginning');
put date1B / date1B Weekdate17.;

date1M=intnx('week','01jan95'd,5,'middle');
put date1M / date1M Weekdate17.;

date1E=intnx('week','01jan95'd,5,'end');
put date1E / date1E Weekdate17.;

date1S=intnx('week','01jan95'd,5,'sameday');
put date1S / date1S Weekdate17.;

date2=intnx('month','01jan95'd,5,'middle');
put date2 / date2 date7.;

date3=intnx('month','01jan95'd,5,'end');
put date3 / date3 date7.;

date4=intnx('month','01jan95'd,5,'sameday');
put date4 / date4 date7.;
run;

137
1
B���252
3
translate(

1
332
1
66
translate(string , toChars1 , fromChars1< , toChars2 , fromChars2<...>>)
 Replaces SPECIFIC characters in a character string.
TRANSTRN(source,target,replacement)
 Replaces or removes all occurrences of a substring in a character string.
 The Basics
 The TRANSTRN function replaces or removes all occurrences of a given substring within a character string.
 The TRANSTRN function does not remove trailing blanks in the target string and the replacement string.
 To remove all occurrences of target, specify replacement as TRIMN("").
	
tranWrd(string , fromString , toString)
 Replaces all occurrences of a substring in a character string.

data _null_;
 x=tranSLATE('XYZW','AB','VW');
 put x=;
 name1=tranWRD(name, "Mrs.", "Ms.");
 put name1;
 name2=tranWRD(name, "Miss", "Ms.");
 put name2;
run;

data list;
 input salelist $;
 length target $10 replacement $3;
 target='FISH';
 replacement='NIP';
 salelist=tranWRD(salelist,target,replacement);
 put salelist;
 datalines;
CATFISH
;
proc print data=list;
run;

/*transtrn Example 1: Replacing All Occurrences of a Word */
/*These statements and these values produce these results: */

data _null_;
 name1="Mrs. Joan Smith";
 name1TRN=transtrn(name1, "Mrs.", "Ms.");
 put name1= name1TRN=;
 name2="Miss Alice Cooper";
 name2TRN=transtrn(name2, "Miss", "Ms.");
 put name2= name2TRN=;
run;

/*Example 2: Removing Blanks from the Search String */
/*In this example, the TRANSTRN function does not replace the source string because */
/* the target string contains blanks. */

data list;
 input salelist $;
 length target $10 replacement $3;
 target='FISH';
 replacement='NIP';
 salelist=transtrn(salelist,target,replacement);
 put salelist;
 datalines;
CATFISH
;

/*The LENGTH statement pads target with blanks to the length of 10, */
/* which causes the TRANSTRN function to search for the character string 'FISH ' in SALELIST. */
/*Because the search fails, this line is written to the SAS log: */
113
1
C���252
3
transtrn(

1
332
1
67
translate(string , toChars1 , fromChars1< , toChars2 , fromChars2<...>>)
 Replaces SPECIFIC characters in a character string.
TRANSTRN(source,target,replacement)
 Replaces or removes all occurrences of a substring in a character string.
 The Basics
 The TRANSTRN function replaces or removes all occurrences of a given substring within a character string.
 The TRANSTRN function does not remove trailing blanks in the target string and the replacement string.
 To remove all occurrences of target, specify replacement as TRIMN("").
	
tranWrd(string , fromString , toString)
 Replaces all occurrences of a substring in a character string.

data _null_;
 x=tranSLATE('XYZW','AB','VW');
 put x=;
 name1=tranWRD(name, "Mrs.", "Ms.");
 put name1;
 name2=tranWRD(name, "Miss", "Ms.");
 put name2;
run;

data list;
 input salelist $;
 length target $10 replacement $3;
 target='FISH';
 replacement='NIP';
 salelist=tranWRD(salelist,target,replacement);
 put salelist;
 datalines;
CATFISH
;
proc print data=list;
run;

/*transtrn Example 1: Replacing All Occurrences of a Word */
/*These statements and these values produce these results: */

data _null_;
 name1="Mrs. Joan Smith";
 name1TRN=transtrn(name1, "Mrs.", "Ms.");
 put name1= name1TRN=;
 name2="Miss Alice Cooper";
 name2TRN=transtrn(name2, "Miss", "Ms.");
 put name2= name2TRN=;
run;

/*Example 2: Removing Blanks from the Search String */
/*In this example, the TRANSTRN function does not replace the source string because */
/* the target string contains blanks. */

data list;
 input salelist $;
 length target $10 replacement $3;
 target='FISH';
 replacement='NIP';
 salelist=transtrn(salelist,target,replacement);
 put salelist;
 datalines;
CATFISH
;

/*The LENGTH statement pads target with blanks to the length of 10, */
/* which causes the TRANSTRN function to search for the character string 'FISH ' in SALELIST. */
/*Because the search fails, this line is written to the SAS log: */

235
1
E���252
3
trantab(

1
332
1
1
tranTab(string , translationTable)
114
1
B���252
3
tranwrd(

1
332
1
67
translate(string , toChars1 , fromChars1< , toChars2 , fromChars2<...>>)
 Replaces SPECIFIC characters in a character string.
TRANSTRN(source,target,replacement)
 Replaces or removes all occurrences of a substring in a character string.
 The Basics
 The TRANSTRN function replaces or removes all occurrences of a given substring within a character string.
 The TRANSTRN function does not remove trailing blanks in the target string and the replacement string.
 To remove all occurrences of target, specify replacement as TRIMN("").
	
tranWrd(string , fromString , toString)
 Replaces all occurrences of a substring in a character string.

data _null_;
 x=tranSLATE('XYZW','AB','VW');
 put x=;
 name1=tranWRD(name, "Mrs.", "Ms.");
 put name1;
 name2=tranWRD(name, "Miss", "Ms.");
 put name2;
run;

data list;
 input salelist $;
 length target $10 replacement $3;
 target='FISH';
 replacement='NIP';
 salelist=tranWRD(salelist,target,replacement);
 put salelist;
 datalines;
CATFISH
;
proc print data=list;
run;

/*transtrn Example 1: Replacing All Occurrences of a Word */
/*These statements and these values produce these results: */

data _null_;
 name1="Mrs. Joan Smith";
 name1TRN=transtrn(name1, "Mrs.", "Ms.");
 put name1= name1TRN=;
 name2="Miss Alice Cooper";
 name2TRN=transtrn(name2, "Miss", "Ms.");
 put name2= name2TRN=;
run;

/*Example 2: Removing Blanks from the Search String */
/*In this example, the TRANSTRN function does not replace the source string because */
/* the target string contains blanks. */

data list;
 input salelist $;
 length target $10 replacement $3;
 target='FISH';
 replacement='NIP';
 salelist=transtrn(salelist,target,replacement);
 put salelist;
 datalines;
CATFISH
;

/*The LENGTH statement pads target with blanks to the length of 10, */
/* which causes the TRANSTRN function to search for the character string 'FISH ' in SALELIST. */
/*Because the search fails, this line is written to the SAS log: */

115
1
2���252
3
trigamma(

1
332
1
1
triGamma(number)
240
1
r���252
3
trim(

1
332
1
49
trim(string)
Removes trailing blanks from a character string, and returns one blank if the string is missing.
TRIMN(argument)
Removes trailing blanks from character expressions, and returns a string
 with a length of zero if the expression is missing.

The TRIM and TRIMN functions are similar.
TRIM returns one blank for a blank string. TRIMN returns a string with a length of zero for a blank string.

Example 1: Removing Trailing Blanks
These statements and this data line produce these results:

data test;
 input part1 $ 1-10 part2 $ 11-20;
 hasblank=part1||part2;
 noblank=trim(part1)||part2;
 put hasblank=;
 put noblank=;
 datalines;
apple sauce
 apple sauce
;
run;

Example 2: Concatenating a Blank Character Expression
SAS Statements Results

data test;
 put "************Trim********************";
 x="A"||trim(" ")||"B";
 Put x=;

 x=" ";
 y=">"||trim(x)||"<";
 put y=;
 put "************TrimN********************";
 x="A"||trimN(" ")||"B";
 Put x=;

 x=" ";
 y=">"||trim(x)||"<";
 put y=;
 run;

116
1
s���252
3
trimn(

1
332
1
49
trim(string)
Removes trailing blanks from a character string, and returns one blank if the string is missing.
TRIMN(argument)
Removes trailing blanks from character expressions, and returns a string
 with a length of zero if the expression is missing.

The TRIM and TRIMN functions are similar.
TRIM returns one blank for a blank string. TRIMN returns a string with a length of zero for a blank string.

Example 1: Removing Trailing Blanks
These statements and this data line produce these results:

data test;
 input part1 $ 1-10 part2 $ 11-20;
 hasblank=part1||part2;
 noblank=trim(part1)||part2;
 put hasblank=;
 put noblank=;
 datalines;
apple sauce
 apple sauce
;
run;

Example 2: Concatenating a Blank Character Expression
SAS Statements Results

data test;
 put "************Trim********************";
 x="A"||trim(" ")||"B";
 Put x=;

 x=" ";
 y=">"||trim(x)||"<";
 put y=;
 put "************TrimN********************";
 x="A"||trimN(" ")||"B";
 Put x=;

 x=" ";
 y=">"||trim(x)||"<";
 put y=;
 run;

117
1
7���252
3
trunc(

1
332
1
1
trunc(number , length)
325
1
.���252
3
uniform(

1
332
1
1
uniform(seed)
289
1
����252
3
upcase(

1
332
1
8
/*UpCase(LCase(*/
data _null_;
x="this IS 1 instance";
Y=upcase(X);
z=LCase(X);
put x= y= z=;
run;

118
1
<���252
3
uss(

1
332
1
1
uss(number1< , number2<...>>)
190
1
<���252
3
var(

1
332
1
1
var(number1< , number2<...>>)
191
1
,���252
3
varray(

1
332
1
1
vArray(name)
330
1
4���252
3
varrayx(

1
332
1
1
vArrayX(expression)
331
1
H���252
3
vartranscode(

1
332
1
1
varTranscode(datasetId , varNum)
332
1
F���252
3
verify(

1
332
1
14
/*Verify*/
/*Might be better to use one of the find functions (find findc findw)
 findfunctions seem to be more powerful*/
data _testing_;
 set sashelp.class;
ObsNo=_n_;
If Mod(_N_,4)=0 then Sex="X";
DataQC=Verify(sex,"MmFf");
if dataQC NE 0 then
	do;
	 put _all_;
	end;
run;

119
1
@���252
3
vformat(

1
332
1
1
vFormat(varName|arrayReference)
333
1
B���252
3
vformatd(

1
332
1
1
vFormatD(varName|arrayReference)
334
1
8���252
3
vformatdx(

1
332
1
1
vFormatDX(expression)
335
1
B���252
3
vformatn(

1
332
1
1
vFormatN(varName|arrayReference)
336
1
8���252
3
vformatnx(

1
332
1
1
vFormatNX(expression)
337
1
B���252
3
vformatw(

1
332
1
1
vFormatW(varName|arrayReference)
338
1
8���252
3
vformatwx(

1
332
1
1
vFormatWX(expression)
339
1
6���252
3
vformatx(

1
332
1
1
vFormatX(expression)
340
1
B���252
3
vinarray(

1
332
1
1
vInArray(varName|arrayReference)
341
1
8���252
3
vinarrayx(

1
332
1
1
vInArrayX(expression)
342
1
D���252
3
vinformat(

1
332
1
1
vInformat(varName|arrayReference)
343
1
F���252
3
vinformatd(

1
332
1
1
vInformatD(varName|arrayReference)
344
1
<���252
3
vinformatdx(

1
332
1
1
vInformatDX(expression)
345
1
F���252
3
vinformatn(

1
332
1
1
vInformatN(varName|arrayReference)
346
1
<���252
3
vinformatnx(

1
332
1
1
vInformatNX(expression)
347
1
F���252
3
vinformatw(

1
332
1
1
vInformatW(varName|arrayReference)
348
1
<���252
3
vinformatwx(

1
332
1
1
vInformatWX(expression)
349
1
:���252
3
vinformatx(

1
332
1
1
vInformatX(expression)
350
1
>���252
3
vlabel(

1
332
1
1
vLabel(varName|arrayReference)
351
1
4���252
3
vlabelx(

1
332
1
1
vLabelX(expression)
352
1
@���252
3
vlength(

1
332
1
1
vLength(varName|arrayReference)
353
1
6���252
3
vlengthx(

1
332
1
1
vLengthX(expression)
354
1
4���252
3
vname(

1
332
1
1
vName(arrayReference)
355
1
2���252
3
vnamex(

1
332
1
1
vNameX(expression)
356
1
F���252
3
vtranscode(

1
332
1
1
vTranscode(varName|arrayReference)
357
1
<���252
3
vtranscodex(

1
332
1
1
vTranscodeX(expression)
358
1
<���252
3
vtype(

1
332
1
1
vType(varName|arrayReference)
359
1
2���252
3
vtypex(

1
332
1
1
vTypeX(expression)
360
1
>���252
3
vvalue(

1
332
1
1
vValue(varName|arrayReference)
361
1
4���252
3
vvaluex(

1
332
1
1
vValueX(expression)
362
1
;���252
3
week(

1
332
1
1
week(<sasDate>< , ><u|v|w>)
138
1
S���252
3
weekday(

1
332
1
12
weekday(sasDate)
 retuns the day of the week as a number. Saturday is day 1
	data check;
	TwoDaysAgo=today()-2;
	yesterday=today()-1;
	today=today();
	tomorrow=today+1;
	Nmbr4Today=weekday(today());
	format TwoDaysAgo yesterday today tomorrow weekdate17.; ;
	run;
	proc print data=check;
	run;
139
1
+���252
3
year(

1
332
1
1
year(sasDate)
140
1
l���252
3
yrdif(

1
332
1
1
yrDif(startSasDate , endSasDate< , '30/360'|'ACT/ACT'|'ACT/360'|'ACT/365'>)
141
1
9���252
3
yyq(

1
332
1
1
yyQ(numericYear , 1|2|3|4)
142
1
4���252
3
zipcity(

1
332
1
1
zipCity(postalCode)
303
1
4���252
3
zipfips(

1
332
1
1
zipFips(postalCode)
304
1
4���252
3
zipname(

1
332
1
1
zipName(postalCode)
305
1
6���252
3
zipnamel(

1
332
1
1
zipNameL(postalCode)
306
1
6���252
3
zipstate(

1
332
1
1
zipState(postalCode)
307
1

A_new_GraphicModelOf SQL.sas
data MySchool;
infile datalines missover;
input @1 name $char7.
 @9 sex $char1.
	 @13 age 2.
	 @17 height 4.1
	 @22 weight 5.1;
/*123456789012345678901234567890*/
Datalines;
Joy F 11 51.3 50.5
Jane F 12 59.8 84.5
Jim M 12 57.3 83.0
Alice F 13 56.5 84.0
Jeff M 13 62.5 84.0
Bob 	M 	14	64.2 90.0
Philip M 16 72.0 150.0
;
run;

data Extra;
infile datalines missover;
input
 @1 name $char7.
 @10 Allergies $char4.
	 @16 Diet $char13.
	 @31 sports $char3.
	 @37 Resident_day $char8.;
/*34567890123456789012345678901234567890123456789*/
datalines;
Joyce None Vegan No Resident	
Jane Nuts Omnivore No Day
James None Omnivore No Resident
Alice Nuts NoMeat Yes Resident
Jeffrey Dust Vegan No Day
Philip None NoMeat Yes Resident
;
run;

data ExtraINfo;
infile datalines missover;
input
 @1 name $char7.
	 @8 Sex $char1.
	 @10 Age 2.
 @13 Allergies $char4.
	 @19 Diet $char6.
	 @27 sports 1.
	 @31 Resident_day $char8.;
/*34567890123456789012345678901234567890123456789*/
/*Name Sex Allerg. Diet Sport ResDay*/
datalines;
Joy F 11 None Vegan 3 Resident
Jane F 12 Nuts Meat 1 Day
Jim M 12 None Meat 0 Resident
Jeff M 13 Dust Vegan 1 Day
Philip M 16 None NoMeat 2 Resident
;
run;
proc print; run;

/**
Section __:
***/
Proc SQL; select Name, sex, count(*), Height, avg(height), weight/2.2 as Wt_KG
 from MyClass
 where sex="M"
		and calculated Wt_KG gt 38
 group by sex
 having substr(name,1,2) NE "Bo"
 and Height/avg(height) Gt .95;

/**
Section __:
***/
 Proc SQL;
 Select Count(*), avg(age) ,sum(age)
 From MYClass;

/**
Section __:
***/
 Proc SQL;
Select Name, count(*) , sex, avg(height)
 From MYClass Where age > 11
 Group by Sex
 Having Substr(name,1,1)='J' and height GT avg(height);

 /**
Section __:
***/
* find the boys who are of the same age as the boy playing the max # of sports;
* find the Girls who are of the same age as the Girl playing the max # of sports;
options nocenter;
Proc SQL;
select name , sex, age
from MySchool as O
where O.Age =(select Age from ExtraInfo as I
 where O.sex=I.sex
			having I.Sport=max(Sport));

			 Proc SQL;
select name , sex, age
from MySchool as O
where O.Age =(select Age from ExtraInfo as I
 Where I.Sex EQ O.Sex
			Having Sports=Max(sports)
);

			 Proc SQL;
select name , sex, age
from MySchool as O
where exists (select * from ExtraInfo as I having I.age = O.age and I.sex NE O.Sex) ;

Aggregate _or_ summing_functions.sas
/**
Section __: Reduce the number of obs in the data set: the slide is crowded
***/
data MyClass;
set SAShelp.class;
if mod(_N_,7) in (0,1,2,4,6,7) ;
label Name="Student name";
run;

/**
Section __: counting percenatges of age-sex as percent of sex - counts
***/
Options nocenter;
Proc SQL;
select count(*) as frm_Count, Freq(name) as From_freq, N(name) as From_N
from Myclass;
quit;
****;
Options nocenter;
Proc SQL;
select count(*) as frm_Count, Freq(*) as From_freq, N(*) as From_N
from Myclass;
quit;

Options nocenter;
Proc SQL;
select count(name) as frm_Count
from Myclass;
quit;
**************************************;
data MyClassW_Miss;
set SAShelp.class;
if mod(_N_,7) in (0,1,2,4,6,7) ;
if mod(_N_,3) in (0) then name=""; ;
label Name="Student name";
run;
Proc Print data=MyClassW_Miss;
run;

Options nocenter;
Proc SQL;
select count(name) as CountNM
 ,count(*) as Count_star
from MyClassW_Miss;;
quit;

***;
Options nocenter;
Proc SQL;
select name, N(age, height) as frm_N
from Myclass;
quit;

Options nocenter;
Proc SQL;
select name, sum(age, height) as row_stuff
from Myclass;
quit;

Options nocenter;
Proc SQL;
select name
	, Sum(age) as Col_age
 , sum (height) as Col_hgt
from Myclass;
quit;

Proc SQL;
select sum(sex="M") as Males 	
		,sum(sex="F") as Females 		
 ,sum(age in(14,15)) as older_kids
from MyClass;
run;

**************************;
****;
OPTIONS NOCENTER;
Proc SQL _METHOD _TREE;
select COUNT(DISTINCT(SEX)) AS SEXES_IN_TABLE
from MyClass;
QUIT;

AGraphicModelOf SQL.sas
/**
Section __: Reduce the number of obs in the data set: the slide is crowded
***/
data MyClass;
set SAShelp.class;
if mod(_N_,7) in (0,1,2,4,6,7) ;
run;

/**
Section __: titles and summary statistics
***/
proc SQL _method _tree;
select left(put(sum(sex='F'),2.0)) as FemCount
	 ,left(put(sum(sex='M'),2.0)) as MaleCount
 ,avg(height) as AllAvgHeight
 ,avg(age) as AllAvgAge
 ,sum(height*(sex='F'))/sum(sex='F') as FemAvgH
	 ,sum(height*(sex='M'))/sum(sex='M') as MaleAvgH
 ,sum(Age*(sex='F'))/sum(sex='F') as FemAvgAge
	 ,sum(Age*(sex='M'))/sum(sex='M') as MaleAvgAge
into :FemCount ,:MaleCount
 ,:AllAvgHeight ,:AllAvgAge
 ,:FemAvgH ,:MaleAvgH
 ,:FemAvgAge ,:MaleAvgAge
 from MyClass
;
%put _user_;
title1 'AllAvgAge=&AllAvgAge and AllAvgHeight=&AllAvgHeight';
title2 'FemAvgAge=&FemAvgAge and MaleAvgAge=&MaleAvgAge';
title3 'FemAvgH=&FemAvgH and MaleAvgH=&MaleAvgH';
title4 'FemCount=&FemCount and MaleCount=&MaleCount';

%put _user_;
title1 'AllAvgAge=&AllAvgAge & FemAvgAge=&FemAvgAge & MaleAvgAge=&MaleAvgAge' ;
title2 ' AllAvgHeight=&AllAvgHeight & FemAvgH=&FemAvgH & MaleAvgH=&MaleAvgH';
title3 'FemCount=&FemCount and MaleCount=&MaleCount';

/**
Section __: examples
***/
Proc SQl; select Name, sex, count(*), age, avg(age), age*12 as AgeMo
 from MyClass
 where sex='M' and calculated AgeMo gt 135
 group by sex
 having substr(name,1,1) NE 'J'
 and age/avg(age) GT 1.043;

Proc SQL;
Select Name, sex, avg(height)
 From MYClass
 Where age GT 11
 Group by Sex
 Having Substr(name,1,1)='J'
	and height GT avg(height);

Proc SQL;
 Select avg(height) as AvgHt
 From MYClass;

 Proc SQL;
 Select avg(height) as AvgHt
 From MYClass
 Group by Sex;

 Proc SQL;
Select Name, sex, avg(height)
 From MYClass
 Where age GT 11
 Group by Sex
 Having Substr(name,1,1)='J'
	and height GT avg(height);

options nocenter ps=30;
proc SQL _method _tree ;
footnote 'all detail obs pass through detail path';
select name , sex, age
from MyClass as C;
run;
footnote '';

proc SQL _method _tree;
footnote1 'two lines, and two variables, go through the grouping path.';
footnote2 'sex is dropped late in the process and not not printed';
select avg(age) as AvAge
from MyClass as C
group by sex;
run;

Proc SQL _method _tree;
footnote1 'Lists all sex values, ordered by sex';
footnote2 'WARNING: A GROUP BY clause has been transformed into an ORDER BY clause ';
footnote3 'because neither the SELECT clause nor the optional HAVING clause of associated ';
footnote4 'table-expression referenced a summary function. ';
select sex
from MyClass as C
group by sex;

Proc SQL _method _tree;
footnote1 'Two obs through the grouping path, none through detail path. ';
footnote2 'Support for idea that all data goes to groping path is that there is ';
footnote3 'No note in the log that mentions a re-merging w/data afterwards';
select sex, avg(age) as AvgAge
from MyClass as C
group by sex;
run;

proc SQL _method _tree;
select
from MyClass as C
having sex='F';

proc SQL _method _tree;
select
from MyClass as C
group by sex
having sex='M';

******???????????????????******************;
Proc SQL _method _tree;
footnote1 'detail lines, plus grouping var (to allow merging), go through detail � path';
footnote2 'two obs (and two vars- sex & AvgAge) go through grouping path. ';
footnote3 'After detail and grouping paths merged, the grouping var is � dropped';

select name , avg(age)
from MyClass as C
group by sex;

Proc SQL _method _tree;
footnote1 'Lists all Name values and sex, ordered � by sex name & sex sent through detial path, � file is sorted ';
footnote2 'WARNING: A GROUP BY clause has � been transformed into an ORDER BY clause � because neither the SELECT clause nor the � optional HAVING clause of the associated table-� expression referenced a summary function. ';

select name , sex
from MyClass as C
group by sex;

Proc SQL;
Footnote1 'The avg in the having sends all filtered obs to the summary path';
Footnote2 'Look at number of obs';

select name, count(*) as obs, age
from MyClass
having age GT avg(age);
run;

Proc SQL;
Footnote1 'The avg in the having sends all filtered obs to the summary path';
Footnote2 'Look at number of obs';

select name, count(*) as obs, age
from MyClass
group by sex
having age GT avg(age);
run;

Automating_W_Scan.sas
/**
Section __: Reduce the number of obs in the data set: the slide is crowded
***/
data MyClass;
set SAShelp.class;
if mod(_N_,7) in (0,1,2,4,6,7) ;
label Name="Student name";
run;

/**
Section __: counting percenatges of age-sex as percent of sex - counts
***/
options mprint mlogic symbolgen;
%macro LoopMac;
Proc SQL;
select distinct age into :agelist separated by " "
from MyClass;
%put &agelist;

%let counter=1;
%do %while(%scan(&agelist,&counter) NE);
%let Thisage=%scan(&agelist,&counter);
 proc Print data=MyClass noobs;
	 where age=&thisage;
	 run;
 %let counter=%eval(&counter +1);
%end;
%mend LoopMac;

%loopmac;

Basic_syntax_and_Case.sas
************;
data MyClass;
set sashelp.class;
if mod(_N_,7) in (0,1,2,4,6,7) ;
run;

Proc SQL number;
Create table BasicSyntax as
Select 	Name ,sex ,Age 	,Avg(AGE) as AvgAge
From MyClass
Where age GE 14
Group by Sex
having AvgAge GT 14.5
Order by sex, name;

options nocenter;
proc print data=BasicSyntax;
run;

****Create var with mult********;
Proc SQL;
Create Table BasicSyntax2 As
Select 	Name ,Age 	
From MyClass;

options nocenter;
proc print data=BasicSyntax2;
run;

Case******;
Proc SQL;
Create Table Basic_syntax4 As
Select 	Name ,	Age ,
 Case /*Structure 1 - works*/
 When Sex="M" and age LE 14 then "M LE 14"
 when Sex="M" then "M GT 14"
 When Sex="F" and age LE 14 then "F LE 14"
 when Sex="F" then "F GT 14"

	else "ODD"
 end as AgeGrp	
From MyClass
;

Proc SQL;
Create Table Basic_syntax4 As
Select 	Name ,	Age ,
 Case /*Structure 1 - works with height variable*/
 When Sex="M" and age LE 14 then "M LE 14"
 when height=72 then "6 foot Tall"
 when Sex="M" then "M GT 14"
 When Sex="F" and age LE 14 then "F LE 14"
 when Sex="F" then "F GT 14"

	else "ODD"
 end as AgeGrp	
From MyClass
;

options nocenter;

Proc SQL;/**SECOND VERION OF THE CASE****/
Create Table Basic_syntax4A As
Select 	Name ,	Age ,
 Case sex /*case structure 2 works*/
 when "M" then "Boy"
 when "F" then "Girl"
 else "ODD"
 end as Gender	
From MyClass
;

OPTIONS NOCENTER;
Proc SQL;/**SECOND VERION OF THE CASE****/
Create Table Basic_syntax4B As
Select 	Name ,	Age ,
 Case age
 when EQ 15 then "Older"
 else "Error"
 end as AgeGroup	
From MyClass
;

Proc SQL;/**SECOND VERION OF THE CASE****/
Create Table Basic_syntax4B As
Select 	Name ,	Age ,
 Case age
 when GT 15 then "Older"
 when LE 15 then "Younger"
 else "Error"
 end as AgeGroup	
From MyClass
;

Proc SQL;/**SECOND VERION OF THE CASE****/
Create Table Basic_syntax4B As
Select 	Name ,	Age ,
 Case age
 when = 14 then "Older"
 when = 13 then "Younger"
 else "Error"
 end as AgeGroup	
From MyClass
;

Proc SQL;/**SECOND VERION OF THE CASE****/
Create Table Basic_syntax4B As
Select 	Name ,	Age ,
 Case age
 when 15 then "Older"
 when 14 then "Younger"
 else "Error"
 end as AgeGroup	
From MyClass
;

/********Sorting*****************/
Proc SQL;/**sorting****/
Create Table Basic_syntax5 As
Select 	Name, sex ,	Age
From MyClass
order by sex, name

;quit;

Proc SQL;/**sorting****/
Create Table Basic_syntax5A As
Select 	Name ,	Age
From MyClass
order by sex, name

;quit;

/**
Section __: Summarizing
***/
/********Summarizing*****************/
Proc SQL;/**Summarizing****/
Create Table Basic_syntax6A As
Select 	name, age, height
 ,sum(age,height) as SummingRows

From MyClass;
quit;

Proc SQL;/**Summarizing****/
Create Table Basic_syntax6 As
Select 	sum(age) as SumAge
 , avg(age) as AvgAge
From MyClass
;quit;

Proc SQL;/**Summarizing****/
Create Table BasicSyntax6a As
Select 	sum(age), avg(age), count(*), count(sex="F"), count(sex="M")
From MyClass
;quit;

proc print data=BasicSyntax6a;run;

Proc SQL;/**Summarizing****/
Create Table BasicSyntax6B As
Select 	sum(age), avg(age), count(*), Sum(sex="F"), Sum(sex="M")
From MyClass
;quit;

Proc SQL;/**Summarizing****/
Create Table BasicSyntax6c As
Select 	avg(age) as AvgAge, count(*) as NmbrSubj,
		Sum(sex="F") as NmbrF, Sum(sex="M") as NmbrM
From MyClass
;quit;

OPTIONS NOCENTER;
Proc SQL;/**Summarizing****/
/*Create Table BasicSyntax6c As*/
Select 	avg(age) as AvgAge
		,Sum((sex="F")*age) as SmFemAges
 ,Sum((sex="M")*Weight) as SmMaleWt
From MyClass
;quit;

/**
Section __: Grouping
***/
Proc SQl;
/*create table BasicSyntax7 as*/
select avg(age) as AvgAge
	, min(age) as MinAge
	, max(age) as MaxAge
 from MyClass
;
 run;

Proc SQl;
/*create table BasicSyntax7A as*/
select sex, avg(age) as AvgAge
	, min(age) as MinAge
	, max(age) as MaxAge
 from MyClass
 Group by sex
 order by sex desc;
 run;

Proc SQl;
create table BasicSyntax7B as
select avg(age) as AvgAge
	, min(age) as MinAge
	, max(age) as MaxAge, count(*)
 from MyClass
 Group by sex;
 run;

 /**
Section __: Filtering where and having
***/
/**where****/
proc SQL;
create table BasicSyntax8 as
select name, age
 from MyClass
 where substr(name,1,1) in ("J","M");

quit;

proc SQL;
create table BasicSyntax8A as
select name, age
 from MyClass
 where substr(name,1,1) in ("A","J","M") and age GT 14;

quit;

/**Having****/
proc SQL;
create table BasicSyntax8B as
select age, avg(height) as AvgHgt
 from MyClass
 group by age
 having AvgHgt GT 59.5;
quit;

coalesce.sas
/**
Section __:
***/

Proc SQL;/*pg 90*/
create table Nm_money
(name char(4)
 ,balance num);

insert into Nm_money /*pg 92*/
 values("russ",.)
 values("joe" ,10000)
 values("Chi" ,60000)
;

Proc SQL;
create table interest as
select name, coalesce(balance,0) a, balance*.05 as interest
from nm_money;
quit;
proc print data=interest;
run;

Proc SQL;
create table interest2 as
select name, coalesce(balance,0) as balance2 , balance2*.05 as interest
from nm_money;
quit;
proc print data=interest2;
run;

Proc SQL;
create table interest3 as
select name, coalesce(balance,0) as balance2 , calculated balance2*.05 as interest
from nm_money;
quit;
proc print data=interest3;
run;

/**
Section __:
***/
Proc SQL;
create table Nm_job_Match
(name char(4)
 ,job char(5));
insert into Nm_job_Match
,values("russ","Geek")
,values("joe" ,"Prgmr")
,values("Chi" ,"Mgr.")
;

Proc SQL;
create table Nm_job_Mismatch
(name char(4)
 ,job char(5));
insert into Nm_job_Mismatch
values("Russ","Geek")
values("Joe" ,"Prgmr")
values("Chi" ,"Mgr.")
;

Proc SQL;
create table Nm_Time
(name char(4)
 ,Time_W_Co num);
insert into Nm_Time
values("russ",6)
values("Chi" ,8)
;

proc SQL;
create table name_Job_Time_Match as
select
 coalesce (j.name,T.name) as name
 ,j.job as job
 ,coalesce(t.Time_W_Co,0) as time_w_co
from Nm_job_match as J
	 left join
 Nm_Time as T
	 on j.name=t.name;
	;
	proc print data=name_Job_Time_match;
	run;

proc SQL;
create table name_Job_Time_Mismatch as
select
 coalesce (j.name,T.name) as name
 ,j.job as job
 ,coalesce(t.Time_W_Co,0) as time_w_co
from Nm_job_Mismatch as J
	 left join
 Nm_Time as T
	 on j.name=t.name;
	;
	proc print data=name_Job_Time_Mismatch;
	run;

/**
Section __:
***/
data Yr2004;
infile datalines truncover
 firstobs=3;
input @1 ID @5 Name $char6.
@15 state $char6.;
Datalines;
ID Name State
12345678901234567890123456789012345678901234567890
001 Bob		 PA2004
005 Carl	 NJ2004
010 Fan DE2004
011 Mike PA2004
;
run;	
data Yr2005;
infile datalines truncover firstobs=3;
input @1 ID @5 Name $char6. @15 state $char6.;
Datalines;
ID Name State
12345678901234567890123456789012345678901234567890
001 Bob		 PA2005
002 Cal NH2005
005 Carl	 NJ2005
006 Errol CA2005
020 Sue NJ2005
;
run;	
data Yr2006;
infile datalines truncover firstobs=3;
input @1 ID @5 Name $char6. @15 state $char6.;
Datalines;
ID Name State
12345678901234567890123456789012345678901234567890
001 Robert	 TN2006
002 Calvin NH2006
005 Carl	 NJ2006
007 Earl NY2006
008 Ell DE2006
025 Ted WI2006
;
run;	

Proc SQL;
create table Yr2006N2005 as
 select
 coalesce(six.ID,Five.ID) as Curr_ID
 ,coalesce(six.name,Five.name) as Curr_name
 ,coalesce(six.State,Five.State) as Curr_Address
 from yr2006 as six
 full join
 yr2005 as five on six.id=five.ID
;
options nocenter;
proc print data=Yr2006N2005;
run;

Proc SQL;
create table current as
 select
 coalesce(six.ID,Five.ID,Four.ID) as C_ID
 ,coalesce(six.name,Five.name,Four.name) as C_name
 ,coalesce(six.State,Five.State,Four.State) as C_Addr
 from yr2006 as six
 full join
 yr2005 as five on six.id=five.ID
 full join
 yr2004 as four on (four.ID=six.ID or four.id=five.id)
 ORDER BY C_ID;
;
options nocenter;
proc print data=current;
run;

proc sort data=Yr2004;
by id;
run;
proc sort data=Yr2005;
by id;
run;
proc sort data=Yr2006;
by id;
run;

data allyrs;
merge Yr2004 Yr2005 Yr2006;
by ID;
run;
options nocenter;
proc print data=allyrs;
run;

ComparisonsNMissing.sas
/**
Section __: Reduce the number of obs in the data set: the slide is crowded
***/
data MyClass;
set SAShelp.class;
if mod(_N_,7) in (0,1,2,4,6,7) ;
label Name="Student name";
run;

/**
Section __: Comparisons : Rules For SQL
***/
/*
<NOT> BETWEEN condition	.	
<NOT> CONTAINS condition	
<NOT> EXISTS condition		
<NOT> IN condition	
IS <NOT> condition	See IS condition.	
<NOT> LIKE condition	See LIKE condition.	
=, eq	equals	
=, ^=, < >, ne	does not equal	
>, gt	is greater than	
<, lt	is less than	
>=, ge	is greater than or equal to	
<=, le	is less than or equal to	
=*	sounds like (use with character operands only).
eqt	equal to truncated strings (use with character operands only).
gtt	greater than truncated strings	
ltt	less than truncated strings	
get	greater than or equal to truncated strings	
let	less than or equal to truncated strings	
net	not equal to truncated strings	
&, AND	indicates logical AND	
|, OR	indicates logical OR	
, ^, NOT	indicates logical NOT	

BETWEEN condition sql-expression <NOT> BETWEEN sql-expression AND sql-expression
	Selects rows where column values are within a range of values.
	The sql-expressions must be of compatible data types. They must be either all numeric or all character types.
	Because a BETWEEN condition evaluates the boundary values as a range, it is not necessary to specify the smaller quantity first.
	You can use the NOT logical operator to exclude a range of numbers, for example, to eliminate customer numbers between 1 and 15 (inclusive) so that you can retrieve data on more recently acquired customers.
	PROC SQL supports the same comparison operators that the DATA step supports. For example:
	 x between 1 and 3	x between 3 and 1	 1<=x<=3	 x>=1 and x<=3

CONTAINS condition sql-expression <NOT> CONTAINS sql-expression
	Tests whether a string is part of a column's value.

EXISTS condition <NOT> EXISTS (query-expression)
	Tests if a subquery returns one or more rows.
	The EXISTS condition is an operator whose right operand is a subquery.
		The result of an EXISTS condition is true if the subquery resolves to at least one row.
		The result of a NOT EXISTS condition is true if the subquery evaluates to zero rows.

IN condition sql-expression <NOT> IN (query-expression | constant <, ... constant>)
	Tests set membership.
	An IN condition tests if the column value that is returned by the sql-expression on the left
		is a member of the set (of constants or values returned by the query-expression) on the right.
	The IN condition is true if the value of the left-hand operand
		is in the set of values that are defined by the right-hand operand.

LIKE condition sql-expression <NOT> LIKE sql-expression
	Tests for a matching pattern.
	The LIKE condition selects rows by comparing character strings with a pattern-matching specification.
		It resolves to true and displays the matched string(s) if the left operand matches the pattern specified by the right operand.
	The ESCAPE clause is used to search for literal instances of
		the percent (%) and underscore (_) characters, which are usually used for pattern matching.

	Patterns are composed of three classes of characters:
		underscore (_)		--> matches any single character.
		percent sign (%) 	--> matches any sequence of zero or more characters.
		any other character --> matches that character.
			Note: When you are using the % character, be aware of the effect of trailing blanks.
			You may have to use the TRIM function to remove trailing blanks in order to match values.

		These patterns can appear before, after, or on both sides of characters that you want to match.
		The LIKE condition is case-sensitive.
		The following list uses these values: Smith , Smooth , Smothers , Smart , and Smuggle .
		'Sm%' 		-->	matches Smith , Smooth , Smothers , Smart , Smuggle .
		'%th' 		-->	matches Smith , Smooth .
		'S__gg%'	--> matches Smuggle .
		'S_o' 		-->	matches a three-letter word, so it has no matches here.
		'S_o%' 		--> matches Smooth , Smothers .
		'S%th' 		-->	matches Smith , Smooth .
		'Z' 		-->	matches the single, uppercase character Z only, so it has no matches here.
		--
		zearching for Literal % and _
		Because the % and _ characters have special meaning in the context of the LIKE condition,
			you must use the ESCAPE clause to search for these character literals in the input character string.
		These example use the values app , a_% , a__ , bbaa1 , and ba_1 .
		The condition like 'a_%' matches app , a_% , and a__ ,
				because the underscore (_) in the search pattern matches any single character (including the underscore),
				and the percent (%) in the search pattern matches zero or more characters, including '%' and '_'.
		The condition like 'a_^%' escape '^' matches only a_% ,
				because the escape character (^) specifies that the pattern search for a literal '%'.
		The condition like 'a_%' escape '_' matches none of the values,
				because the escape character (_) specifies that the pattern search for an 'a' followed by a literal '%',
				which does not apply to any of these values.
		--
 		Searching for Mixed-Case Strings
		To search for mixed-case strings, use the UPCASE function to make all the names uppercase
				before entering the LIKE condition:
				upcase(name) like 'SM%';

Sounds like Operator
Retrieving Values with the SOUNDS-LIKE Operator
 The SOUNDS-LIKE operator is based on the SOUNDEX algorithm for identifying words that sound alike.
 The SOUNDEX algorithm is English-biased and is less useful for languages other than English.
The SOUNDEX function encodes a character string according to an algorithm that was originally developed
 by Margaret K. Odell and Robert C. Russel (US Patents 1261167 (1918) and 1435663 (1922)).
The algorithm is described in Knuth, The Art of Computer Programming,
The SOUNDEX function returns a copy of the argument that is encoded by using the following steps:

Retain the first letter in the argument and discard the following letters:
	A E H I O U W Y
Assign the following numbers to these classes of letters:
	 1: B F P V
 	 2: C G J K Q S X Z
 	 3: D T
 	 4: L
 	 5: M N
 	 6: R

If two or more adjacent letters have the same classification from Step 2,
		then discard all but the first. (Adjacent refers to the position in the word prior to discarding letters.)
Examples:
|---------------CODE THESE STATEMENTS------------------| RESULT IS:
x=soundex('Paul');							put x;				-->P4
word='amnesty';			x=soundex(word);	Put x;				-->A523
*/

/**
Section __: Missing Values
***/
/*
Missing Character is a blank or a string of blanks
Missing numeric is (ususally) a period
Missing valuesa are equal to themselves and are: 1) first in sorts and 2) smaller than other vlaues

Consider missing values in:
Is Null or Is Missing
Is Like
Exists
Functions (count, sum, avg, min, Max etc.
*/

/**
Section __: SAS code for Comparisons
***/
*<NOT> BETWEEN condition;
proc SQL;
select name , sex, age
from MyClass
where age Between 13 and 14
order by age;
quit;

proc SQL;
select name , sex, age
from MyClass
where age NOT Between 13 and 14
order by age;
quit;

*character;
proc SQL;
select name , sex, age
from MyClass
where name Between "Al" and "James"
order by Name;
quit;

proc SQL;
select name , sex, age
from MyClass
where name Between "Zeke" and "Jonah" /*Order is reversed*/
order by Name;
quit;

Proc SQL;
create table names /*NO as*/
(name char(7));
insert into names
values ("art")
values ("Amie")
values ("Zeke")
values ("zander")
values ("1223")
values (" ")
values (" ")
;
quit;
proc SQL number;
select "*"||name||"*" from names order by name;
quit;

proc SQL;
select name , sex, age
from MyClass
where name Between "Ambrose" and "aaron"
order by Name;
quit;

*<NOT> CONTAINS Tests whether a string is part of a column's value. ;
Proc SQL;
select name, sex, age
from MyClass
where name contains "L";
run;

Proc SQL;
select name, sex, age
from MyClass
where upcase(name) contains "L";
run;

Proc SQL;
select name, sex, age
from MyClass
where upcase(name) contains "FF" or upcase(name) contains "CE";
run;

Proc SQL number _method _tree;
title "produces very odd results";
select name, sex, age
from MyClass
where upcase(name) contains "FF" or "CE";
run;

*<NOT> EXISTS condition;
*	Tests if a subquery returns one or more rows.
	The EXISTS condition is an operator whose right operand is a subquery.
		The result of an EXISTS condition is true if the subquery resolves to at least one row.
		The result of a NOT EXISTS condition is true if the subquery evaluates to zero rows. ;
proc SQL ;
select age, sex, name from MyClass as Outer
	where exists (select Name from MyClass as Inner
					where Outer.age EQ Inner.age and
						 Outer.Sex NE Inner.Sex)
Order by Outer.age, Outer.sex;

proc SQL ;
select age, sex, name from MyClass as Outer
	where NOT exists (select Name from MyClass as Inner
					where Outer.age EQ Inner.age and
						 Outer.Sex NE Inner.Sex)
Order by Outer.age, Outer.sex;

*<NOT> IN condition Tests set membership.
IN condition sql-expression <NOT> IN (query-expression | constant <, ... constant>)
	An IN condition tests if the column value that is returned by the sql-expression on the left
		is a member of the set (of constants or values returned by the query-expression) on the right.
	The IN condition is true if the value of the left-hand operand is in the set of values that are defined by the right-hand operand.
 *IS <NOT> condition	See IS condition.	;
proc SQL ;
select age, sex, name from MyClass
	where SEX IN ("F","U");

proc SQL ;
select sex, age, name from MyClass as Outer
	where Name IN (Select Name from MyClass as Inner
					where outer.sex=Inner.sex
 			having(outer.age=max(inner.age) or outer.age=min(inner.age)
))
order by Sex , age;
	
proc SQL ;
select sex, age, name from MyClass as Outer
	where Name, age IN (Select Name, age from MyClass as Inner
					where outer.sex=Inner.sex
 			having(outer.age=max(inner.age) or outer.age=min(inner.age)
))
order by Sex , age;

*<NOT> LIKE condition	Tests for a matching pattern.
LIKE condition sql-expression <NOT> LIKE sql-expression
	The LIKE condition selects rows by comparing character strings with a pattern-matching specification.
		It resolves to true and displays the matched string(s) if the left operand matches the pattern specified by the right operand.
	The ESCAPE clause is used to search for literal instances of
		the percent (%) and underscore (_) characters, which are usually used for pattern matching.

	Patterns are composed of three classes of characters:
		underscore (_)		--> matches any single character.
		percent sign (%) 	--> matches any sequence of zero or more characters.
		any other character --> matches that character.;

proc SQL;
select name from MyClass
where name Like "_a";

proc SQL;
select name from MyClass
where name Like "_a%";

proc SQL;
select name from MyClass
where name Like "%ff";

proc SQL;
select name from MyClass
where name Like '%ff';

proc SQL;
select name from MyClass
where name Like '%ff%';

*=, eq	equals;
*=, ^=, < >, ne	does not equal;
*>, gt	is greater than;
*<, lt	is less than;
*>=, ge	is greater than or equal to;
*<=, le	is less than or equal to;
=	sounds like (use with character operands only);
*eqt	equal to truncated strings (use with character operands only);
*gtt	greater than truncated strings;
*ltt	less than truncated strings;
*get	greater than or equal to truncated strings;
*let	less than or equal to truncated strings;
*net	not equal to truncated strings;
*&, AND	indicates logical AND;
*|, OR	indicates logical OR;
*, ^, NOT	indicates logical NOT;

/**
Section __:
***/
/*Null Values
According to the ANSI Standard for SQL, a missing value is called a null value.
It is not the same as a blank or zero value.
However, to be compatible with the rest of SAS, PROC SQL treats missing values the same as blanks or zero values,
and considers all three to be null values. This important concept comes up in several places in this document.
*/
Proc SQL;
create table names_N_Num /*NO as*/
(name char(7)
,NumVal num);
insert into names_N_Num
values ("art",22)
values ("Amie",.)
values ("Zeke",11)
values ("zander",55)
values ("1223",123)
values (" ",88)
values (" ",.);
quit;

options nocenter;
proc SQL;
select *
from names_N_Num
where Name is missing;
quit;

options nocenter;
proc SQL;
select *
from names_N_Num
where Name is Null;
quit;

options nocenter;
proc SQL;
select *
from names_N_Num
where NumVal is missing;
quit;

options nocenter;
proc SQL;
select *
from names_N_Num
where NumVal is Null;
quit;

Proc SQL;
select *
from names_N_Num
where name is " ";
quit;

Proc SQL;
select *
from names_N_Num
where name = " ";
quit;

Proc SQL;
select *
from names_N_Num
where name = " ";
quit;

concatinating.sas

Not in PPT

/**
Concatinating inside the select statement
SQL_Benefits_whitlock.pdf
***/
1. The names of data sets
2. WHEN / OUTPUT statements for a
SELECT block
The first case is easily handled by
select distinct 'lib.'||split
into :datalist separated by ' '
from all ;
The second is more of the same, only harder.
select distinct
'when ('||split||') output lib.'||
split into :whenlist
separated by ';'
from all
;

data &datalist ;
set all ;
select (split) ;
&whenlist ;
otherwise ;
end ;
run ;

/**
Assembling and concatinating cool stuff in SQL select
***/
PROC CONTENTS DATA=OLDDATA NOPRINT
OUT=OUT(KEEP=NAME);
RUN;
PROC SQL NOPIRNT;
SELECT NAME INTO :VAR SEPARATED BY ‘=1 OR ‘
FROM OUT WHERE CONDITION IS NOT NULL;
DATA NEWDATA;
SET OLDDATA;
IF &VAR=1;
RUN;

PROC CONTENTS DATA=OLDDATA…;
PROC SQL NOPIRNT;
SELECT ‘ELSE IF ABC=’ AS CONDITN, ABC INTO
:INA1-:INA99, :INB1-:INB99 FROM OUT WHERE
CONDITION IS NOT NULL;
QUIT;
%MACRO ASSIGN;
%DO I=1 %TO &SQLOBS;
&&INA&I”&&INB&I” THEN NEWVAR=1;
%END;
%MEND;
DATA NEWDATA;
SET OLDDATA;
IF ABC=’0’ THEN NEWVAR=1;
%ASSIGN;
RUN;

Counting_duplicates.sas
/**
Section __: Reduce the number of obs in the data set: the slide is crowded
***/
data MyClass;
set SAShelp.class;
if mod(_N_,7) in (0,1,2,4,6,7) ;
label Name="Student name";
run;

/**
Section __: counting duplicat occurrances of ages & age-sexODS
***/
Options nocenter;
Proc SQL;
Select age, count(*) as Count_of_age
from MyClass
group by age
having Count_of_age >1;

Options nocenter;
Proc SQL;
Select sex, age, count(*) as Count_of_age
from MyClass
group by sex, age
having Count_of_age >1;
run;
run;

Custom_Sort_Order.sas
/**
Section __: Reduce the number of obs in the data set: the slide is crowded
***/
data MyClass;
set SAShelp.class;
if mod(_N_,7) in (0,1,2,4,6,7) ;
label Name="Student name";
run;

/**
Section __: counting percenatges of age-sex as percent of sex - counts
***/
Proc SQL;
create table MC_V2 as
select MC.Name, MC.age, ranuni(4) as Ord_var
from MyClass as MC;
run;

Proc SQL;
Select name, age
from MC_V2
order by Ord_Var;
run;

Customizing and supressing column headers.sas
/**
Section __: Reduce the number of obs in the data set: the slide is crowded
***/
data MyClass;
set SAShelp.class;
if mod(_N_,7) in (0,1,2,4,6,7) ;
label Name="Student name";
run;

proc SQL _method _tree;
select left(put(sum(sex="F"),2.0)) as FemCount
	 ,left(put(sum(sex="M"),2.0)) as MaleCount
 ,avg(height) as AllAvgHeight
 ,avg(age) as AllAvgAge
 ,sum(height*(sex="F"))/sum(sex="F") as FemAvgH
	 ,sum(height*(sex="M"))/sum(sex="M") as MaleAvgH
 ,sum(Age*(sex="F"))/sum(sex="F") as FemAvgAge
	 ,sum(Age*(sex="M"))/sum(sex="M") as MaleAvgAge
into :FemCount ,:MaleCount
 ,:AllAvgHeight ,:AllAvgAge
 ,:FemAvgH ,:MaleAvgH
 ,:FemAvgAge ,:MaleAvgAge
 from MyClass
;
%put _user_;
title1 "AllAvgAge=&AllAvgAge and AllAvgHeight=&AllAvgHeight";
title2 "FemAvgAge=&FemAvgAge and MaleAvgAge=&MaleAvgAge";
title3 "FemAvgH=&FemAvgH and MaleAvgH=&MaleAvgH";
title4 "FemCount=&FemCount and MaleCount=&MaleCount";

%put _user_;
title1 "AllAvgAge=&AllAvgAge & FemAvgAge=&FemAvgAge & MaleAvgAge=&MaleAvgAge" ;
title2 " AllAvgHeight=&AllAvgHeight & FemAvgH=&FemAvgH & MaleAvgH=&MaleAvgH";
title3 "FemCount=&FemCount and MaleCount=&MaleCount";

options nocenter;
Proc SQl;
select name, age
from MyClass
where Sex ="F";

options nocenter;
Proc SQl;
select
name Label='StuNme'
, age Label='StuAge'
from MyClass
where Sex ="F";

Proc SQl;
create table fancy as
select
name Label='StuNme'
, age Label='StuAge'
from MyClass
where Sex ="F";
proc print data=fancy label;
run;

/**
Section __:
***/
Proc SQl;
select
name Label="#"
, age Label="#"
from MyClass
where Sex ="F";

Proc SQl;
create table fancy as
select
name Label='#'
, age Label='#'
from MyClass
where Sex ="F";

proc print data=fancy label;
run;

/**
Section __:
***/
Proc SQl;
select
name Label="#"
, age Label="#" format=6.3
from MyClass
where Sex ="F";

Proc SQl;
create table fancy as
select
name
, age format=6.3
from MyClass
where Sex ="F";

proc print data=fancy label;
run;

Dictionaries.sas
/**
Section __: Reduce the number of obs in the data set: the slide is crowded
***/
data MyClass;
set SAShelp.class;
if mod(_N_,7) in (0,1,2,4,6,7) ;
label Name="Student name";
run;

/**
Section __: counting percenatges of age-sex as percent of sex - counts
***/

proc SQL flow=15;
select * from dictionary.macros;

proc print data=SASHELP.Vmacro;
run;

proc SQL flow=15;
select * from dictionary.tables;

proc print data=SASHELP.Vtable;
run;

proc SQL flow=15;
select * from dictionary.columns;

proc print data=SASHELP.Vcolumn;
run;

/**
Section __: Example
***/
proc SQL;
select memname into :filelist separated by " "
 from Dictionary.tables
 where libname="SASHELP" & MEMTYPE="DATA" ;
%put &filelist;

options nocenter;
%MACRO Check_Dir;
%let lp=1;
%do %while(%scan(&filelist,&Lp) NE);
%let ThisFl=(%scan(&filelist,&Lp);
 Proc Contents data=SASHelp.&thisFl;
 Proc Print data=SASHelp.&thisFl(obs=10);
 run;
 %let Lp+%eval(&Lp+1);
%end;
%MEND Check_Dir;
%Check_Dir;

Distinct_ing.sas
/**
Section __: Reduce the number of obs in the data set: the slide is crowded
***/
data MyClass;
set SAShelp.class;
if mod(_N_,7) in (0,1,2,4,6,7) ;
label Name="Student name";
run;

/**
Section __: counting percenatges of age-sex as percent of sex - counts
***/
options nocenter;
Proc SQL _method _tree;
select distinct age
from MyClass as MC;
run;

Examples_From_Talk_level_1_and_2.sas
/***
Program: Macro Examples: Examples from talk level 1 and level 2
By: rml

Purpose: Contains code from semianr examples, class examples AND
 Two different levels of sas macro examples
 To provide sample code for people learning macros

Infiles:

Outfiles: xxxxxxxxxxxxxxxx
Started: XXXXXXXXXXXXXXXXXX
Finished: XXXXXXXXXXXXXXXXXX

Usage: Run this code and interpret it using the Map of SAS
 use this as a source for solutions in your programming.
 Often we just need to have a worked sxample to modifiy
 Read the comments. Hopefully they will help;

Mod. Info: XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

***/

/**

 Many of the examples should be run in sections look for *run to here;

**/

/***/
/***/
/************** Code from talk **********************************/
/***/
/***/

/**
 SECTION CFT_1: Global macro variables
***/

Data year;
infile datalines missover firstobs=2;
input @1 Month $char5.
 @ 10 Sales @15 Returns @20 inventory;
Datalines;
12345678901234567890
jan 60 12 15
feb 61 6 14
mar 59 6 13
apr 66 5 14
may 59 4 15
june 60 3 11
july 61 5 17
aug 63 4 16
sept 62 6 15
oct 64 6 13
nov 66 6 15
dec 67 3 17
jan 60 12 13
feb 66 7 15
mar 58 5 13
apr 65 7 13
may 60 5 14
june 63 7 12
july 63 4 16
aug 61 4 15
sept 61 5 13
oct 62 5 12
nov 65 3 14
dec 64 3 15

;
run;
PROC PRINT;
title "Just look at the data";
RUN;

*run to here;

%let month=jan; /*using Global macros is poor programming practice */

start of reports;
proc means data=year;
title "report for &Month; This is how people ususally start using macros";
title2 "A simple substitution of a value in a title and a where";
where month="&month";
run;

Proc print data=year;
where month="&month";
run;
title "";

*run to here;

/**
 SECTION CFT_2 RULES FOR MACRO ASSIGNMENT
***/
/*I want to stre proc print; run; in a macro and save my silf some typing */
/*This is a classic miswtake - the first semicolon ends the %let
 - must use macro quoting. Macro quoting is covered in a different lecture)*/

%LET OOPS=Proc Print; run; /*This attempts to assign proc Print; run; to a macro variable*/

%put _user_; /*This prints the user created macro variables to the sas log */

*run to here;

 /*This is the fix*/
%LET smile=%str(Proc Print; run;);
%put _user_;
%put ⌣
 /*Use the fix to print the last data set You used*/
⌣

*run to here;

/***
 SECTION CFT_3 %let and the double ampersand
**/
/*This is just proctice for the && and && and &&&... */
%let StNames =holding1;
%let holding1=holding2;
%let holding2=NY,NJ,DE;

*run to here;

 **run the lines below and see what you get;

%put &StNames;
*run to here;

%put &&StNames;
*run to here;

%put &&&StNames;
*run to here;

%put &&&&StNames;
*run to here;

%put &&&&StNames;
*run to here;

%put &&&&&&&StNames;
*run to here;

/***
 SECTION CFT_4 the first example of a macro program
***/
/*This allows us to discuss the %if %then %do %end */
data sales;
infile datalines missover;
input state $ zip $ sales Prod $;
datalines;
PA 19103 20 Gizmo
PA 19104 30 DoDad
PA 19104 20 DoDad
PA 19104 10 Gizmo
PA 19103 20 Gizmo
PA 19104 30 DoDad
PA 19104 20 DoDad
PA 19104 10 Gizmo
DE 18939 13 DoDad
DE 18922 12 Gizmo
DE 18877 17 Gizmo
DE 18877 7 Gizmo
DE 18877 27 DoDad
NJ 08002 94 Scone
;
run;

%put _automatic_; /*put the Macro vars THAT SAS AUTOMATICALLY CREATES to the log */
*run to here;

%Macro Pprint; /*This uses global macro variables :-(*/
title "Stuff for &State";
%if &sysdate=22JUL06 %then %do;
	 proc freq data=sales;
	 tables state/missing; run;
%end;
	proc print data=sales;
	 where state="&state";
	 sum sales;
	 run;
%Mend Pprint;

%Macro Mmean; /*This uses global macro variables :-(*/
 proc means data= sales;
 where state="&state";
 run;
%Mend Mmean;
*run to here;

%let state=NJ; /*The use of global macro varibales is NOT encouraged!! See below*/
%Mmean;
*run to here;

%let state=DE; /*The use of global macro varibales is NOT encouraged!! See below*/
%Pprint;
*run to here;

%let state=PA; /*The use of global macro varibales is NOT encouraged!! See below*/
%Mmean;
*run to here;

/*Below is a better way to do the above - use local named macro variables*/

%Macro Pprint2(State=); /*This says" "when I call the macro I will tell it the value of state"*/
title "Stuff for &State";
%if &sysdate=Friday %then %do;
 proc freq data=sales;
 tables state/missing; run;
%end;
proc print data=sales;
 where state="&state";
 sum sales;
 run;
%Mend Pprint2;

%Macro Mmean2(state=);
 proc means data= sales;
 where state="&state";
 run;
%Mend Mmean2;
*run to here;

%Mmean2(state=NJ)
*run to here;

%PPrint2(state=DE) ;
*run to here;

/***
SECTION CFT_6 The classic FAILURE to interact with the data - A TIMING ERROR
**/
/*We want to put a FLAG in the title, depending on the sum of the sales*/
/*We will tell manages, in the title of the report, if the sales were high or low*/

proc summary data=sashelp.shoes;/*We need the sum of sales in a data set*/
output out= for_macro
 (where=(_type_=0)) sum(sales)=SmRv; run; /*SmRv stands for Sum of the revenue*/

proc print data=for_macro; /*Just look at the data set*/
run;
*run to here;

data _null_; /*use the Sum Revenue, in an If, to decide what walue the macro variable Tval (Title Variable) should have*/
set for_macro;
if SmRv GE 0 and
 SmRv LE 9999 then %let Tvar=LOW month; ;
else if SmRv GT 9999 then
 %let Tvar=HIGH month; ;
else %let Tvar=missing; ;
run;

%put _user_;
*run to here;

proc print data=sashelp.shoes(obs=5); /*%lets evaluate at the top of the input stack*/
title "How was this month? It was a &Tvar Month";
title2 "Tvar always has the value of missing";
run;
title "";
*run to here;

/**
Parameter rules for Symput Symget and call execute
***/
/*
if quoted, that is the value, if not quoted, go to the PDV to get the value to use
Call Symput has two parameters (1) the macro variable name and (2) its value
Symget and call execute only have one parameter

*/

/**
 SECTION CFT_7 A bit out of order, but seeing symget now will allow us to put
 the example that uses symput and symget in one section
***/
/*a very simple example of how Symget works, no business meaning*/
%let a1=the first;
%let a2=the middle;
%let a3=the end;
%put _user_;
*run to here;

data new;
infile datalines;
input FRMPDV $ @@;
datalines;
A1 A2 A3 A2
run;

data new;
length dest $12;
set new ;
dest=symget(FRMPDV); /*Unquoted parameter look a the PDV for the value*/
run;

proc print data=new;
run;
*run to here;

/**
SECTION CFT_8 having your program interact with the data
 Symput and symget in one example
***/

/*We need a business reason for doing this
Management wants to know, for each salesperson,
 their sales as a percent of their department sales
 and sales as a percentage of the total store sales.*/

data Sales; /*the raw sales data*/
 input dept $ name $ sales;
 cards;
bedding Watlee 18000
kitchen Cannon 15000
tv Jones 9000
carpet Keller 20000
bedding Ives 16000
bedding Parker 9000
bedding George 8000
bedding Joiner 8000
carpet Ray 12000
carpet Jones 9000
kitchen White 8000
kitchen Banks 14000
kitchen Marks 9000
tv Smith 8000
tv Rogers 15000
tv Morse 16000
;
run;
proc print data=sales;
run;
*run to here;

proc means data=sales;
/*this data set will have total store sales on line 1 and department sales on following lines*/
/*Thesea re the denominators for the calculation of percentages*/
 class dept;
 var sales;
 output out=stats sum(sales)=s_sal;
run;

proc print data=stats;
 var dept s_sal;
 title "Summary of Sales Information";
 title2 "For Dusty Department Store";
run;
*run to here;

*******Create the macro variables with call symput;
data _null_;
 set stats;
/*Put the total sales and department sales into meaningfully named macro variables*/
if _n_=1 then
call symput('s_tot',s_sal); /*Sales total*/

else call symput('s'||dept,s_sal); /*Sales for bedding, tv etc */
run;

%put _user_;
*run to here;

*******use the macro variables with symget;
data new;
set sales;
pct_d= (sales / symget('s'||dept)) *100;

pct_t= (sales / &s_tot) *100;

run;

Proc print data=new;
title "this is a cool example showing a mini-projct that uses call symput and symget";
run;
title "";
*run to here;

/**
SECTION CFT_9 Call execute puts stuff on the input stack;
**/
/*This is a very simple example showing what Call Execute does*/
/*Call execute put stuff on the input stack*/
/*The opower of call execue is in WHAT you have it put on the input stack*/

data _null_;

call execute
 ("Proc Print data=sashelp.Class;");

call execute
 ('title "New Title";');

call execute ("run;");
run;
*run to here;

/**
SECTION CFT_10 Call execute - A more prActical example
**/
/*We will use call execute to automate a job*/
/*The invironmant is that we have a large data file and several standard reports*/
/*We typically run a report on a subsets of the data (we slice the data several ways)*/

Data interest; /*I am interested in these report types on these states*/
infile datalines;
input state $ RType $;
datalines;
PA Sales
NJ Com
;
Run;
proc print data=interest;
title "this is my control file - it controls what progamas get run and how they subeset the data";
run;
title "";
*run to here;

Data NE_regn; /*the BIG :-) data file */
infile datalines missover;
input state $ Person $ Sales Com;
datalines;
NJ Shira 100 10
CT Vijay 700 73
DE Ellen 600 62
PA Ed 300 34
NJ Sarah 400 44
CT Val 600 56
DE Eve 400 39
PA Eric 400 42

;
run;
Proc print data=NE_regn;
title "/*the BIG :-) data file */ ";
run;
*run to here;

%macro SSales(state=); /*One of our standard reports*/
proc print data=NE_regn;
title "Sales for &state";
title2 "slightly different from slides";
title3 "Use of named parameters is Better coding practice";
var person Sales;
where state ="&state";
run;
%Mend SSales;

%macro CCom(state=); /*One of our standard reports*/
proc print data=NE_regn;
title "Comm. for &state";
title2 "slightly different from slides";
title3 "Use of named parameters is Better coding practice";
var person com;
where state ="&state";
 run;
%Mend CComm;
*run to here;

*Call execute puts stuff on the input stack;
/*Use call execute to automate our jobs*/
data _null_;
set interest;
if upcase(Rtype)="SALES" then call execute('%SSales(state='||state||')');
else if upcase(Rtype)="COM" then call execute('%CCom(state='||state||')');
run;
*run to here;

/***/
/***/
/************** IN CLASS EXERCISES **********************************/
/***/
/***/

/**
Section IN_CE_1 QUOTES AFFECT RESOLUTION OF THE &
**/
Proc Print DATA=SASHELP.SHOES; /*SLIGHLTY DIFFERENT FROM CLASS*/
title "Sales Listing using automatic variables in the footnote";
footnote 'Acme Co. Run on: &Sysday &Sysdate';
var REGION SALES RETURNS;
Run;
*run to here;

/**
Section IN_CE_2 PUTTING THE RUN TIME IN YOUR FOOTNOTE OR TITLE
 QUOTES AFFECT RESOLUTION OF THE &
**/
**SUB-example 1 - single quotes block macro resolution;
Proc Print data=SASHELP.SHOES(OBS=5);
title "Sales Listing";
footnote ‘Acme Co. Run on: &Sysday &Sysdate’;
var REGION SALES RETURNS;
Run;
*run to here;

**SUB-example 2;
Proc Print data=SASHELP.SHOES(OBS=5);
title 'Sales Listing';
footnote "Acme Co. Run on: &Sysday, &Sysdate";
var REGION SALES RETURNS;
Run;
*run to here;

**SUB-example 3 - use sysfunc to get the REAL RUN TIME/DATE in a title or footnote;
 options mlogic mprint symbolgen;
Proc Print data=SASHELP.SHOES(OBS=5);
title1 "Sales Listing: run on %sysfunc(datetime(),datetime16.)";
TITLE2 "COMPARE TIME IN THE TITLE WITH THE TIME IN THE FOOTER";
footnote "Acme Company Run: &sysday &sysdate &SYSTIME";
footnote2 '&sysday &sysdate &SYSTIME are "loaded" when SAS is started';
var REGION SALES RETURNS;
Run;
*run to here;

/**
Section IN_CE_3 Evaluating ampersands
***/
/*The section heading says it all*/
%let File11 =Y1999 ;
%let Mac21= Like ;
%let Mac31=I ;
%let File12=Y2000 ;
%let Mac22=Outlet ;
%let Mac32=Fun;
%let Lib13=Sales ;
%let Mac23=here ;
%let Mac33=snow;
%let Lib14= Fish ;
%let Mac24=it ;
%let Mac34=at;
%let Mac15=Man ;
%let Mac25=people ;
%let Mac35=cold;
%let Mac16=Maine ;
%let Mac26=any ;
%let Mac36 =mac15;
*run to here;

%put &mac31 &mac21 &mac24 &mac23;
*run to here;

%put &mac33&mac15;
*run to here;

%put Mail&mac15;
*run to here;

%put &mac15Eater;
*run to here;

%put &mac15.Eater;
*run to here;

%put &Lib14.er&Mac15;
*run to here;

%put &Mac15 &Mac26 &Lib13 &Mac34 the &Mac22;
*run to here;

/*using the . as an explicit "end of macro name" indicator*/
%put set &Lib13&File11;
*run to here;

%put set &Lib13.&File11;
*run to here;

%put set &Lib13..&File11;
*run to here;

/**
Section IN_CE_4 Indirect addressing
***/

data indirect;
infile datalines;
input @1 region $char5. @10 Cust $char8. @20 sale 6.2 ;
datalines;
regn1 Acme 133.33
regn2 A&P 233.33
regn3 TrJoe 333.33
regn4 Acme 433.33
regn2 A&P 533.33
regn4 Mom&Pop 633.33
regn1 Acme 733.33
regn3 Acme 833.33
regn4 Mom&Pop 933.33
;
run;
*run to here;

%macro indir(PointV=); /*note the use of named macro parameter :-) */
%let regn1=Sally Struthers;
%let regn2=Edith Bunker;
%let regn3=Rob Reiner;

PROC PRINT DATA=INDIRECT;
WHERE REGION="&PointV";
TITLE "SALES: &&&PointV the manager of &PointV";
Run;
/*for fun comment out the run - re-compile and re-run*/
%mend indir;
*run to here;

%indir(pointv=regn1);
*run to here;

%indir(pointv=regn3);
*run to here;

/**
Section IN_CE_5 looping and the macro reference environment
***/
/*This is another example of automating a program (Making it data driven)*/

data one;
infile datalines missover firstobs=2;
input @1 Rep $char8.
 @11 Prod $char9.
 @22 Uni;

datalines;
123456789012345678901234567890
Maryanne widget 12
Maryanne gizmo 22
Maryanne chatchkie 22
Ian widget 12
Ian gizmo 22
russ widget 8
russ gizmo 4
;
run;

Proc print data=one;
run;
title ""; footnote "";
*run to here;

Proc freq data=one;
tables rep /out=repsales(drop=percent);
run;

data _null_;
set repsales end=eof;
call symput("RepNo"||left(put(_n_,1.)), rep);
call symput("Utsby"||left(put(_n_,1.)),count);
if eof=1 then
 do;
 call symput("LoopLim",_n_);
 end;
run;
%put _user_;
*run to here;

/*Look at what we did- put macros to the log*/
%put &RepNo1 has sales of &UtsBy1;
%put &RepNo2 has sales of &UtsBy2;
%put &RepNo3 has sales of &UtsBy3;
*run to here;

%macro printing; /*use a loop to access/use each macro variable*/
%put Before loop starts i=&i; /*this line gives a hint on internal processing*/

%do i = 1 %to &looplim;
 %put inside the loop BEFORE the run i=&i; /*this line gives a hint on internal processing*/
 proc print data=one;
 title "sales for &&repno&i - not centered";
 where Rep="&&repno&i";
 sum uni;
 run;
 title "";
 %put inside the loop - after the run i=&i; run; /*this line gives a hint on internal processing*/
%end;
 %put Outside the loop i=&i; /*this line gives a hint on internal processing*/

%mend printing;

%printing;
*run to here;

/**
Section IN_CE_6 checking for the existance of a file - sysfunc
 this is an automation technique
***/
/*if you are going to automate a job (like a payroll)
 it is good to check that you have all your source files before you start the main program*/

%macro grace1(dsn=);
 %if %sysfunc(exist(&dsn)) %then
 %do;
 proc print data=&dsn; /*this print is our "main program" - pretty small in this example*/
 run;
 %end;
%else %put !!!!!!!!!!!!! File &dsn NOT FOUND !!!!!!!!!!!!!!!!!!;
%mend grace1;

%grace1(dsn=one);
*run to here;

options nomlogic nomprint nosymbolgen;
%grace1(dsn=two); /* this does not exist*/
options mlogic mprint symbolgen;
*run to here;

/**
Section IN_CE_7 %eval - doing math with the macro processor
***/
/*the macro processor is a text processing subroutine and does math poorly*/

%let test1 = (6 + 22); /*this is not evaluested*/
%let test1A=%eval(6 + 22); /*this is a way to do INTEGER MATH - you can also do floating decimal point math*/

%put test1 is not evaluated and equals &test1 but test1A evaluates so Test1A equals &test1A;
run;
*run to here;

%let test1B=%eval(7 / 2); /*this is a way to do INTEGER MATH - you can also do floating decimal point math*/
%put &test1B;

%let test1C=%SysEvalF(7 / 2); /*this is a way to do INTEGER MATH - you can also do floating decimal point math*/
%put &test1C;

/**
Section IN_CE_8 OPTIONAL Macro processor confusion -
 is GE a company or a mnemonic for Greater than or Equal to?
 This is a macro fragment - It will not run for two reasons" it is a fragment and it has quoting issues
 This is an intro to the problem of Macro quoting - No answer given in this talk
***/
* We are checking to see if the company is Lucent Technologies -> LT;
/*This shows why people need to learn to macro quote (the quick fix ofen works as well)*/
/*the macro says GE NE LT is False!!!!*/

options mlogic symbolgen;
%Macro Stocks(Symb=);
/* %if "&symb" NE "LT" %then*/ /*Using double quotes is often a quick fix*/

 %if "&symb" NE "LT" %then /*This syntax confuses the macro processor*/
 %do;
 proc print data=AnnRpt;
 where stock="&symb";
 run;

 %end;
%mend stocks;

%stocks(Symb=GE);
*run to here;

/**
Section IN_CE_9 Where are macros stored ?
***/
proc catalog Cat=work.sasmacr;
title "Where did my macro Go??";
title2 "it went to a catalog in work";
contents;
quit;
title "";
*run to here;

***/

/***/
/***/
/************** LEVEL ONE Examples of cool code ***********************/
/***/
/***/

/***
 SECTION : ** system options useful for macros
**/
*Nocenter left aligns output in the listing window and makes it easier to read;
*Mprint Mlogic and Symbolgen cause SAS to write more "stuff" to the log. Stuff about the macros you run;
options nocenter;
options mprint mlogic symbolgen; /*Causes additional info to be sent to the log*/
*run to here;

/***
 SECTION : ** print the datasets we will use in these examples;
**/
/*All sas students shold know that these data sets exist*/
proc print data=sashelp.class;
title "This is the data set used by most examples";
run;
*run to here;

proc print data=sashelp.shoes;
title "this data set can be used by readers to create their own reports/macros";
run;
title "";
*run to here;

/***
 SECTION 1: Macros recall values for you
 Checking what is in the macro symbol table - What you have stored (and, therfore, what you can recall)
 %let creates a global macro variable and use og GLOBAL macro variables is to be avoided when you can
**/
proc print data=sashelp.class;
run;
*run to here;

*Lets see how we can look at the contents of the macro table;
****;
%let MVsex="M"; /*Global Variable ;-(*/
/*Macro variables are text. People get confused about the need for quoting*/
* MVsex is not quoted, it contains quotes */
**** you can look at macro values in many ways;

%put _user_; /*Shows all the user defined macro variables*/
%put we want the value of a variable = &mvsex mvsex; /*¯oVarName shows the vlaue of that variable */
*run to here;

/*if you put quotes IN the macro variable itself, you do not need hem when you use the macro*/
/*INtentional error below*/
proc print data=sashelp.class;
where sex="&MVsex";
/*the log looks odd. The error is because of double quoting of M.*/
/* we must fix the macro variable- or the where - */
run;
*run to here;

/**MPrint Mlogic and Symbolgen are options for checking -
 only Symbolgen "works" in this simple macro use - Mlogic and Mprint do not "kick in"*/
options mprint mlogic nosymbolgen /*nomprint nomlogic nosymbolgen */;
proc print data=sashelp.class;
where sex=&MVsex; /*we must fix the macro - or the where - here we fix the where- the quotes are IN MVsex*/
run;
*run to here;

%let MVsex=M; /*No quotes in the macro variable*/
proc print data=sashelp.class;
where sex="&MVsex"; /**/
run;
*run to here;

We need to know what isw in the macro symbol table- inquiring minds want to know *******************;
*Several different ways of looking into the Macro Symbol table are shown below;
%put _user_;
*run to here;

%put _Global_;
*run to here;

%put _Automatic_;
*run to here;

%put _All_;
*run to here;

%put _user_;
*run to here;

*or you can use SQL to see the Macro Symbol Table- very cool stuff, but it is a bit advanced;
proc sql;
describe table dictionary.macros;
select distinct scope from dictionary.macros
where scope="GLOBAL";
quit;
*That is it- above are all the ways I know how to check the symbol table;
*run to here;

proc print data=SASHELP.Vmacro;
where scope="GLOBAL";
quit;

/***
 SECTION 2a: macro example MPRINT(ONESEX): lines in the log are the result of MPRINT
 This example shows named macro parameters (these are local and are good programming practice)
**/
/*explore case sensitivity. - This is really the playing with the normal SAS case sensitivity*/

/*Mprint Mlogic and symbolgen are useful macro debugging tools*/
/*They can produce too much stuff. turn them off with NOmprint NOMlogic and Nosymbolgen*/
options mprint mlogic mprint;

%macro OneSex(ListSex=);
proc print data=sashelp.class;
where sex="&ListSex";
run;

proc means data=sashelp.class;
where sex="&ListSex";
run;
%mend;
*run to here;

%OneSex(ListSex=M); /*this works*/
*run to here;

%OneSex(ListSex=m); /*this shows the case sensitivity - returns 0 Obs*/
*run to here;

%OneSex(ListSex=F); /*this works*/
*run to here;

%put _user_;
*run to here;

/***
 SECTION 2b: macro example: A macro with two criteria in the where
**/
/*This is just an expansion of the examples above - we pass two parameters to the macro*/
/*We know the filtering variables when we write the macro, but not the value of interest*/

%macro TwoCrit(ListSex=
 ,listAge=);
%put ***Macro variables printed from inside the macro - notice LOCAL variables***;
%put _user_;
proc print data=sashelp.class;
where sex="&ListSex" and age <=&ListAge;
run;

proc means data=sashelp.class;
where sex="&ListSex" and age=&ListAge;
run;

%mend TwoCrit;
*run to here;

%TwoCrit(ListSex=F
 ,listAge=15);
%put _all_; /*Note that Listage and listsex have disappeared- they were local*/
run;
*run to here;

/***
 SECTION 2c: macro example: A macro where you can specify the where variable and its value
**/
/*When we wrote this macro we did not know the filtering variable Or its value of interest */

%macro VarNVal(Wherervar=
 ,WhereValue=);
proc print data=sashelp.class;
where &Wherervar = &WhereValue ;
run;

proc means data=sashelp.class;
where &Wherervar = &WhereValue ;
run;
%mend VarNVal;
*run to here;

%VarNVal(Wherervar=Sex
 ,WhereValue="F");
*run to here;

%VarNVal(Wherervar=Age
 ,WhereValue=15);
*run to here;

/***
 SECTION 2D: macro examples: Specify the where variable, its value and the relationsip
**/
/*This is a little more complex The section heading says it all*/
/*Specify the where variable, its value and the relationsip when you run the macro*/

%macro VarRelVal(Wherervar=
 ,relat=%str(GE) /*GE is a default - %str is macro quoting & too deep to explain here */
 ,WhereValue=);
proc print data=sashelp.class;
where &Wherervar &relat &WhereValue ;
run;

proc means data=sashelp.class;
where &Wherervar &relat &WhereValue ;
run;
%mend VarRelVal;
*run to here;

%VarRelVal(Wherervar=Age
 /*If we do not specify a value for relat, SAS uses the default*/
 ,WhereValue=14);
*run to here;

%VarRelVal(Wherervar=Age
 ,relat=%str(=)
 ,WhereValue=15);
*run to here;

/*The example below is a trick to "remove" a where caluse from a macro*/
%VarRelVal(Wherervar=1
/*A useful "Where" trick!!
 Where 1=1
 is always true and so prints all the obs */
 ,relat=%str(=)
 ,WhereValue=1);
*run to here;

/***
 SECTION 3: indirect addressing and the &&
**/
**An INtroduction to INDIRECT ADDRESSING AND THE &&;
%let month=january;
%let timep=&month;
%put month=&month timep=&timep;
*run to here;

%let StNames =holding1;
%let holding1=holding2;
%let holding2=NY,NJ,DE;
*run to here;

%PUT &StNames;
*run to here;

%PUT &&StNames;
*run to here;

%PUT &&&StNames;
*run to here;

%PUT &&&&&&&StNames;
*run to here;

%let ooops=%str(proc print; run;); /*%str again - macro quoting */
%put _user_;
*run to here;

&ooops;

/***
 SECTION 4:Rules for puting stuff in the Macro Symbol table
 The first semi-colon ends the command
 & and % are evaluated
**/
** the first semocolon ends the command;
%let oops=proc print; run;
%put _user_;
*run to here;

%let oops2=%str(proc print; run;);
%put &oops2; /* note the note in the log about unmasking*/
*run to here;

%put _user_; /* note the boxes in the log if you have V8 (odd characters if you have V9)*/
/*Boxes are maked or quoted characters and can not be printed as they are stored*/
*run to here;

%put _all_;
*run to here;

**& and % (have to wait for a full understanding of %) are evaluated on macro assignment;
*put an & into the macro symbol table;
options mlogic symbolgen mprint;
%let time_period=&month;
%put &time_period &month;
*run to here;

****SECTION 4A-1***Kind advanced stuff. a % is evaluated as it flows into the symbol table;
/* ;-(Note that the RESULTS of %macklist in the table, not the string %makelist******* */
shows a % being evaluated as it goes into the symbol table*********************;
/*We have three macro variables and we want to combine them into one, called ListOf By Variables*/

%let Max_of_bys=3; /*count of "real" by macros defined below- Do not count By0 */
%let By0=%str();
 /* Must have B0 to get the overall answers - fill with spaces to length of longest By*/
%let By1=%str(By spec);
%let By2=%str(By cat);
%let By3=%str(By segment);
*run to here;

/*concatinate the values of the by variabels into one macro var- use this for sorting*/
%macro makelist;
 %do cntr=1 %to &Max_of_bys; %substr(&&by&cntr,4) %end;
%mend makelist;
*run to here;

/*below we try to put a % into the Macro Symbol Table*/
options mprint mlogic symbolgen;
%let LstOfByVars=%makelist; /*%makelist RUNS as/before it is loaded into the macro symbol table*/
%put LstOfByVars=&LstOfByVars by1=&by1 by2=&by2 by3=&by3; /*where does the one space between the variables come from?*/
*run to here;

/***
 SECTION 5: an example of a %if
 Imagine that the data set is being refreshed as transactions occurr
 We want a daily report of sales and returns for a region
 and on Friday we want a report on inventory in all regions
 If we are short of inventory, we want to be able to get inventory from another region
**/
/*This is a macro that uses a %IF to produce EXTRA analysis, if run on saturday*/

%macro mac_if(Subsidiary=);
 /*Change the day of the week to change execution of the macro*/
%if %upcase(&sysday) EQ SATURDAY %then
 %do;
 title "End of Week Inventory report for &Sysday, &sysdate";
 proc summary data=sashelp.shoes missing;
 class product region subsidiary ;
 output out=invntry(drop= _Type_ _freq_) sum(sales inventory)= ;
 Types Product*Region*subsidiary;
 quit;

 Proc Print data=invntry uniform;
 by product ;
 run;
 title "";
 %end;

 Proc print data=sashelp.shoes;
 title "Listing of activity in subsidiary: &subsidiary";
 var region subsidiary product;
 where subsidiary="&Subsidiary";
 run;
 title "";

%mend Mac_if;
*run to here;

options mprint mlogic symbolgen;
%mac_if(Subsidiary=Ottawa);
*run to here;

/***
 SECTION 6: An Example of using creating and using macro variables -- See Call Symput (Below) and symget (section 7)
 this is sometimes called "creating a macro array"
**/
/*This is the example from the seminar again*/
/*None of the individual commands make sense */
/*we need to see the whole project to undersand what goes on and, very importantly, WHY we did this this way*/

data Sales;
 input dept $ name $ sales;
 cards;
bedding Watlee 18000
kitchen Cannon 15000
tv Jones 9000
carpet Keller 20000
bedding Ives 16000
bedding Parker 9000
bedding George 8000
;
run;

proc means data=sales;
 class dept;
 var sales;
 output out=stats sum=s_sal;
run;
*run to here;

proc print data=stats;
 var dept s_sal;
 title "Summary of Salary Information";
 title2 "For Dusty Department Store";
run;
*run to here;

data _null_;
 set stats;
if _n_=1 then
 call symput('s_tot',s_sal);
 else call symput('s'||dept,s_sal);
run;

/*above (creating a macro array is NOT useful
 without seeing the technique for USING a macro array*/
/*Some code useing this array will be shown below Ex 11- think of the two examples together*/
%put _user_;
*run to here;

**This example is continued in section 7;

/***
 SECTION 7: Basics of Symget - a simple example of getting values from the macro table
 Timing Issues
 Using a data step (not the top of the Input stack) to get values
 from the Macro Symbol Table
**/
/*repeat of material - this was also included in the first section*/
/*Thik of this as a footnote- stuck in the middle of the example shown in 6 and 8*/
%let a1=the first;
%let a2=the middle;
%let a3=the end;
%put _user_;
*run to here;

data new;
infile datalines;
input FRMPDV $ @@;
datalines;
A1 A2 A3 A2
;
run;

data new;
length dest $12;
set new ;
dest=symget(FRMPDV); /*Assign the value of the macro to the variable dest */
run;

proc print data=new;
run;
*run to here;

**put on the debugger if you know how to use it;
*data new/debug;
*length dest $12;
*set new ;
*Executable="this line";
*dest=symget(FRMPDV);
*run;

/***
 SECTION 8: A more practical Example of Symget - use "Macro Array" created in Section 5

**/
/*This is a seminar example - this is the end of the example started in 6*/
data new;
set sales;
pct_d= (sales / symget('s'||dept)) *100;
stop1="here";

pct_t= (sales / &s_tot) *100;
stop2="there";
run;

proc print data=new;
title "Section 7 - using the array created in Secion 5";
run;
*run to here;

/***
 SECTION 9: A simple call execute - it put stuff on the input stack

**/
/*Also shown in section 1*/
*Call execute puts stuff on the input stack;
data _null_; /*this is pretty silly, but that is what execute does*/
call execute("Proc Print data=SASHELP.class;");
call execute('title "New Title";');
call execute("run;");
run;
*run to here;

/***
 SECTION 10a: macros can be used to produce SMALL PIECES OF SAS statements

**/
**this will not run- I do not have data to support this;
/*You can look a tthe log to see what it generates*/
/*It generates, not a whole proc, but just a few tokens*/
/*I do not want to type
 Fiscal_year1997 Fiscal_year1998 Fiscal_year1999..... Fiscal_year2006 and wrote a macro*/
/*people do this!! instead of
 Fiscal_year1997-Fiscal_year2006
 and it makes for tough reading*/

%macro years(start= , end=);
 %do i= &start %to &end;
 fiscal_year&i
 %end;
%mend years;

/* Sometimes you write a macro before the data arrives.
 You can check the log to see if the macro did what you wanted it to do
 EVEN THOUGH THE LACK OF A DATA SET CAUSES AN EXECUTION ERROR
 The log tells me that my macro is good*/

options nomlogic mprint nosymbolgen;
data combined;
set %years(start=1997, end=2006);
;
run;
*run to here;

/***
 SECTION 10b: macros can be used to produce SMALL PIECES OF SAS statements

**/
/*another example of using a macro to produce a small piece of code*/
/*makes for difficult reading*/

%macro MyWhere(start= , end=);
 %do i= &start %to %eval(&end-1);
 &i ,
 %end;
 &i
%mend MyWhere;

proc print data=sashelp.class;
where age in(%MyWhere(start=12,end=14));
run;
*run to here;

/***
 SECTION 10C: macros can be used to produce SMALL PIECES OF SAS statements

**/
/*another example of using a macro to produce a small piece of code*/
/*makes for difficult reading*/

%MACRO MyElse(ageLvl=
 ,sexLvl=
 ,class=);
 else if age=&ageLvl and Sex="&sexLvl" then class="&class" ;

%mend MyElse;
*run to here;

options mprint;
data oops;
set sashelp.class;

if age=10 and sex="M" then class="M Pre-teen";
%MyElse(ageLvl=10,SexLvl=F,class=F Pre-teen)
%MyElse(ageLvl=11,SexLvl=M,class=M Pre-teen)
%MyElse(ageLvl=11,SexLvl=F,class=F Pre-teen)
%MyElse(ageLvl=12,SexLvl=M,class=M Pre-teen)
%MyElse(ageLvl=12,SexLvl=F,class=F Pre-teen)
%MyElse(ageLvl=13,SexLvl=M,class=M Teen)
%MyElse(ageLvl=13,SexLvl=F,class=F Teen)
else class = "No Class";
run;

Proc Print data=oops;
run;
*run to here;

/***
 SECTION 10D: Capture, in a text file, A CLEAN COPY of what your code generates

**/
/*Debugging macros can be a pain in the neck.
 You have to imagine what goes on or read a log that is often very cluttered
 You can capture the code that the macro generates with the trick below*/

%macro wrapper;
data oops;
set sashelp.class;

if age=10 and sex="M" then class="M Pre-teen";
%MyElse(ageLvl=10,SexLvl=F,class=F Pre-teen)
%MyElse(ageLvl=11,SexLvl=M,class=M Pre-teen)
%MyElse(ageLvl=11,SexLvl=F,class=F Pre-teen)
%MyElse(ageLvl=12,SexLvl=M,class=M Pre-teen)
%MyElse(ageLvl=12,SexLvl=F,class=F Pre-teen)
%MyElse(ageLvl=13,SexLvl=M,class=M Teen)
%MyElse(ageLvl=13,SexLvl=F,class=F Teen)
else class = "No Class";
run;

Proc Print data=oops;
run;

%mend wrapper;
*run to here;

 /*the directory c:\TEMP MUST EXIST on your computer for this to run*/
 /*Check the log for a not about writing to an external file, then look a the file*/
options mprint mfile;
filename mprint "C:\temp\captured_code.txt";

%wrapper

options noMprint;
*run to here;

/***/
/***/
/************** LEVEL TWO Examples **********************************/
/***/
/***/

/***
 more examples below - See if these make sense

**/

/***
 SECTION 11: Positional parameters ARE LOCAL and good programming practice
 Also, this illustrates a trick to "get rid of the where clause"
 This shows how global macros can interfere with other macros
**/
%macro Positional_1(WhereCls= /*This should be the whole where clause statement, without a ;*/
);
%put _user_;
proc print data=sashelp.class;
title "A local and global macro have the same name";
&WhereCls ;
run;
%mend Positional_1;
*run to here;

%Positional_1(WhereCls=);
*run to here;

%Positional_1(wherecls=Where sex="M");
%put _user_; /*there is no macro named WhereLcs when this statement executes*/
*run to here;

/***
 SECTION 12: Positional parameters ARE LOCAL and good programming practice
**/

%macro Positional_2(WhereCls=);
%put "";
%put "Macro Evaluated when the macro is running";
%put _user_;
%put "";

proc print data=sashelp.class;
title "A local and global macro have the same name";
&WhereCls ;
run;
%mend Positional_2;
*run to here;

%let wherecls=Some Darn Global Value from section 12;
%put _user_;
*run to here;

%Positional_2(WhereCls=Where sex="M");
*Note the two macro variables (GLOBAL and local to Positional_2) named wherecl;
%put _user_;
*run to here;

/***
 SECTION 13: the OLD way of looping, using symput to create a macro array.
 We end up with lots of global macro variables in memory
 Symput is falling out of fashion and folks are using SQL

 This program prints a proc contnets and 10 obs for every SAS table in the library SASHELP
***/
/*This macro produces a proc contents and 10 obs for every SAS table in the library SASHELP*/

data _null_;
set sashelp.vtable;
where memtype="DATA" and libname="SASHELP";
count+1;
call symput("dsn_"||left(put(count,3.0)),memname);
call symput("No_of_files",count);
 /*Gets called many times and the number just keeps getting bigger */
 /*we only care about the last time it is called*/
run;
%put _user_;
*run to here;

%macro oldway;
%do i=1 %to &No_of_files;
 title "contents and 10 obs from sashelp.&&dsn_&i;";
 proc contents data=sashelp.&&dsn_&i;
 run;
 proc print data=sashelp.&&dsn_&i(obs=10);
 run;
 title "";
%end;
%mend oldway;
*run to here;

%oldway;
*run to here;

/***
 SECTION: 14 Semi-New Way of looping - SQL into ONE LOCAL macro variable
 and put upper limit of loop into &SQLOBS - use do loop
***/
/*This macro produces a proc contents and 10 obs for every SAS table in the library SASHELP*/

%macro Chk_files;
options nocenter;
proc sql noprint;
select memname into :file_list separated by " "
 from dictionary.tables
 where memtype="DATA" and libname="SASHELP";
quit;
%let SQLOBS=&SQLOBS;
%put _user_;
*run to here;

%do i=1 %to &SQLOBS /*%while=(%scan(&file_list,&file_no) NE)) ; */;
 %let thisfile=%scan(&file_list,&i);
 proc contents data=sashelp.&thisfile(obs=10);
 title "contents and 10 obs from sashelp.&thisfile";
 run;

 proc print data=sashelp.&thisfile(obs=10);
 run;
 title "";
%end; /*end of the loop*/
%mend Chk_files;
*run to here;

%Chk_files;
*run to here;

/***
 SECTION: 15 Newest Way of looping.
 Use SQL and scan the macro variable until scan returns a blank
***/
/*This macro produces a proc contents and 10 obs for every SAS table in the library SASHELP*/
%macro Chk_files;
options nocenter;
proc sql noprint;
select memname into :file_list separated by " "
 from dictionary.tables
 where memtype="DATA" and libname="SASHELP";
quit;
%let SQLOBS=&SQLOBS;
%put _user_;

%let file_no=1;
%do %while(%scan(&file_list,&file_no) NE) ;
 %let thisfile=%scan(&file_list,&file_no);
 proc print data=sashelp.&thisfile(obs=10);
 title "10 obs from sashelp.&thisfile";
 run;
 %let file_no=%eval(&file_no+1); /*endless loop if this is forgotten*/
%end; /*end of the loop*/
%mend Chk_files;
*run to here;

%Chk_files;
*run to here;

/***
 SECTION 16: Just Playing around, Using the SQL and creating individual macro varaibles
***/
/*the SQL "into" is used to create macro variables. It is powerful and popular */
%macro Semioldway;
proc sql noprint;
select distinct memname into :infile1-:infile999
 from dictionary.tables
 where memtype="DATA" and libname="SASHELP";
quit;

%let Countoffiles=&SQLobs;
%Put _user_;

%do i=1 %to &Countoffiles;
 proc print data=sashelp.&&infile&i(obs=10);
 title "proc print data=sashelp.&&infile&i(obs=10);";
 run;
%end;
%mend Semioldway;
*run to here;

%Semioldway;
*run to here;

/***
 SECTION 17 : Use call execute to automate a job
 WHEN WE GO TO A NEW DIRECTORY WE NEED TO LEARN WAHT IS IN THE DIRECTORY
 WE USUALLY PRINT THE CONTENTS OF THE FILES AND 10 OBSERVATOINS FROM EACH FILE
***/
/*This is an example of using a contol file to automate a job*/
/*We want a contents and 10 obs for all the files in a directory*/

options nocenter;
proc sql noprint;
TITLE 'CREATE A CONTROL FILE - this file "Drives"/"passes parameters to" the macro';
create table file_list as
select memname
 from dictionary.tables
 where memtype="DATA" and libname="SASHELP";
quit;

%macro ContAnd10(DSN=); /*WRITE A MACRO TO BE CONTROLLED BY A CONTROL FILE */
proc contents data=sashelp.&dsn;
title "10 obs using: proc print data=sashelp.&dsn(obs=10);";
run;
proc print data=sashelp.&dsn(obs=10);
run;
%mend ContAnd10;
*run to here;

data _null_;
/*use the CONTROL file to call the macro and pass it parameters */
set file_list;
call execute('%ContAnd10(DSN='||memname||')');
*call executes calls the macro and passes it parameters;
run;
*run to here;

/***
 SECTION 18 : Use call execute to automate a job
***/

%macro printing;

%do i = 1 %to &looplim;

proc print data=one;
 title "sales for &&repno&i";
 where salesrep ="&&repno&i";
 sum units;
run;

%end;
%mend printing;
*run to here;

/***
 SECTION 19A MORE JOB AUTOMATION - CREATE A MINI REPORT FOR EACH AGE in the file SASHELP.lcass
 Have SAS figure out how many ages there are in the data
 This is dynamic programming- the data tells us what to do
**/
/*This is a data driven process - we ask the infile how many reports to generate*/

proc freq data=sashelp.class;
tables age/out=out_age(drop=count percent); /*We need a report for each level of age in the outfile*/
run;

proc print data=out_age; /*Look at the outfile*/
run;
*run to here;

data _null_; /*Create macro variables from the levels of age in out_age*/
set out_age end=eof;
call symput('age'||left(put(_N_,2.)),age);
if eof=1 then call symput("NumOfObs",_n_); /*This will be the upper limit of the looping*/
run;
%put _user_;
*run to here;

%macro age_loop; /*The looping macro*/
%do i= 1 %to &NumOfObs;
 Proc print data=sashelp.class;
 title "list of students of age=&&age&i";
 where age=&&age&i;
 run;
 title "";
%end;
%mend age_loop;
*run to here;

%age_loop;
*run to here;

/***
 SECTION 19B MORE JOB AUTOMATION - CREATE A MINI REPORT FOR EACH SEX
 Have SAS figure out how many levels of sex there are in the data
 This is dynamic programming- the data tells us what to do
**/
/*this is VERY similar to the example above, but 90% of learning is practice*/
proc freq data=sashelp.class;
tables sex/out=out_sex(drop=count percent);
run;

proc print data=out_sex;
run;
*run to here;

data _null_;
set out_sex end=eof;
call symput('Sex'||left(put(_N_,2.)),sex);
if eof=1 then call symput("NumOfObs",_n_);
run;
%put _user_;
*run to here;

%macro sex_loop;
%do i= 1 %to &NumOfObs;
 Proc print data=sashelp.class;
 title "list of students of sex=&&sex&i";
 where sex="&&sex&i";
 run;
 title "";
%end;
%mend sex_loop;
*run to here;

%sex_loop;
*run to here;

/***
 SECTION 19C MORE JOB AUTOMATION - use SQL to CREATE A MINI REPORT FOR EACH SEX
 Have SAS figure out how many levels of sex there are in the data
 This is dynamic programming- the data tells us what to do
**/
proc SQL;
select distinct sex into :SexList separated by " "
from sashelp.class;
quit;
%put &SexList;

%macro AutoMatic;
%let counter=1;
%do %while(%scan(&sexlist,&counter) NE);
 %let ThisSex=%scan(&sexlist,&counter);
 Proc print data=sashelp.class;
 title "listing of students in SASHELP.class whith sex=&ThisSex";
 where sex="&ThisSex";
 run;
 title "";

%let counter=%eval(&counter+1);

%end;
%mend AutoMatic;

%AutoMatic;

/***
 SECTION 20 MORE JOB AUTOMATION - TIMING of macro events
 When you run the macro
 Note the order of notes in the log
 - that can tell you the order of when things happened
 -
**/
/*Note where the %puts are, in relation to the notes about run times*/
options source2 mprint;
data one;
infile datalines missover firstobs=2;
input @1 Rep $char8. /*Sales Rep*/
 @11 Prod $char9. /*Product Sold*/
 @22 Uni; /*Units sold*/

datalines;
123456789012345678901234567890
Maryanne widget 12
Maryanne gizmo 22
Maryanne chatchkie 22
Ian widget 12
Ian gizmo 22
russ widget 8
russ gizmo 4
;
run;

Proc freq data=one;
tables rep /out=repsales(drop=percent);
run;

proc print data=one;
run;
*run to here;

data _null_;
set repsales end=eof;
call symput("RepNo"||left(put(_n_,1.)), rep);
call symput("Utsby"||left(put(_n_,1.)),count);
if eof=1 then
 do;
 call symput("LoopLim",_n_);
 end;
run;

%put _user_;
*run to here;

%macro printing;
/*We will change the centering to nocenter and then change it back*/
/*This is mre than a courtesy - do it all the time*/
%local CentLvl;
data _null_;
 set sashelp.voption(where=(optname="CENTER"));
 call symput("CentLvl",setting);
run;
*run to here;

options nocenter;

 %put Outside the loop - Before loop starts i=&i;
%do i = 1 %to &looplim;
 %put ; %put ; %put ;
 %put inside the loop BEFORE the run i=&i;
 proc print data=one;
 title "sales for &&repno&i -not centered";
 where Rep="&&repno&i";
 sum uni;
 run;
 title "";
 %put inside the loop - after the run i=&i;

run;
%end;

options &CentLvl; /*return system variable center? to original value*/
 %put Outside the loop - all looping/printing done about to shut down i=&i;
%mend printing;
*run to here;

%printing;
*run to here;

 proc print data=one;
 title "sales -print is outside the macro ";
 title2 "system option has been re-set and outp[ut IS NOT centered";
 run;
title "";
*run to here;

/*check if we reset the centering*/
proc options;
title "look for either CENTER or NOCENTER in the left hand column ";
run;
title "";
*run to here;

/***

 THAT'S ALL FOLKS -- THE END

**/

fIXED_COOL_EXAMPLES.sas
/**
Section __: Reduce the number of obs in the data set: the slide is crowded
***/
data MyClass;
set SAShelp.class;
if mod(_N_,7) in (0,1,2,4,6,7) ;
run;

/***
Section __: Use SQL to create the combination "Headers" that must be coded
 Cut and paste from SAS Listing back into program below
**/

data Group;
infile datalines truncover firstobs=2;
input @1 Group $char24. ;
datalines;
1234567890123456789012345678901234567890123456789012
G1- NO Group Statement*/
G2- Yes Group statement*/
;
run;

data having;
infile datalines truncover firstobs=2;
input @1 Having $char66. ;
datalines;
12345678901234567890123456789012345678901234567890123456
/*H1- NO having clause */
/*H2- having applied to Summary variable */
/*H3- having applied to Group variable */
/*H4- having applied to Group and Summary Variables */
/*H5- Having applied to Detail Data */
/*H6- Having applied to Summary and Detail Data */
/*H7- Having applied to Group and Detail Data */
/*H8- Having applied to Summary, Group and Detail Data*/
;
run;

data Select;
infile datalines truncover firstobs=2;
input @1 select $char63. ;
datalines;
123456789012345678901234567890123456789012345678901234567
/*S1-No variables in Select
/*S2-Select has: NO Detail - No Group - YES Summary
/*S3-Select has: NO Detail - YES Group - NO Summary
/*S4-Select has: NO Detail - YES Group - YES Summary
/*S5-Select has: YES Detail - No Group - No Summary
/*S6-Select has: YES Detail - No Group - YES Summary
/*S7-Select has: YES Detail - YES Group - No Summary
/*S8-Select has: YES Detail - YES Group - YES Summary
;
run;

data break;
infile datalines truncover firstobs=2;
input @1 break $char95. ;
datalines;
1234567890123456789012345678901234567890123456789012345678901234567890123456789012345
/**/
;
run;

options ps=300 nocenter ls=120;
options ps=30 nocenter ls=120;
/*Generate section headers to be used in program below*/
proc sql number;
select Break, select, group, having, break
from select, having, group, break;
quit;

**this query is just to create macro variables holding interesting characeristics;
*we will put these values into following queries- just so we do not have to remember numbers;
options ls=120 nocenter;
proc SQL _method _tree;
select left(put(sum(sex="F"),2.0)) as FemCount
	 ,left(put(sum(sex="M"),2.0)) as MaleCount
 ,avg(height) as AllAvgHeight
 ,avg(age) as AllAvgAge
 ,sum(height*(sex="F"))/sum(sex="F") as FemAvgH
	 ,sum(height*(sex="M"))/sum(sex="M") as MaleAvgH
 ,sum(Age*(sex="F"))/sum(sex="F") as FemAvgAge
	 ,sum(Age*(sex="M"))/sum(sex="M") as MaleAvgAge
into :FemCount ,:MaleCount
 ,:AllAvgHeight ,:AllAvgAge
 ,:FemAvgH ,:MaleAvgH
 ,:FemAvgAge ,:MaleAvgAge
 from MyClass
;
%put _user_;
title1 "AllAvgAge=&AllAvgAge and AllAvgHeight=&AllAvgHeight";
title2 "FemAvgAge=&FemAvgAge and MaleAvgAge=&MaleAvgAge";
title3 "FemAvgH=&FemAvgH and MaleAvgH=&MaleAvgH";
title4 "FemCount=&FemCount and MaleCount=&MaleCount";

%put _user_;
title1 "AllAvgAge=&AllAvgAge & FemAvgAge=&FemAvgAge & MaleAvgAge=&MaleAvgAge" ;
title2 " AllAvgHeight=&AllAvgHeight & FemAvgH=&FemAvgH & MaleAvgH=&MaleAvgH";
title3 "FemCount=&FemCount and MaleCount=&MaleCount";

proc means data=myclass;
class sex;
run;

/**
Section __: Pre-examples
***/
Proc SQL;
Select Name, sex, avg(height)
 From MYClass
 Where age GT 11
 Group by Sex
 Having Substr(name,1,1)='J' and height GT avg(height);

 Proc SQL;
 Select avg(height) as AvgHt
 From MYClass
;

 Proc SQL;
 Select avg(height) as AvgHt
 From MYClass
 Group by Sex
;

/* 1 **/
/*S1-No variables in Select G1- NO Group Statement */
/*H1- NO having clause */
/**/
options NOCENTER ls=120 ps=30;
Proc SQL _method _tree;
FOOTNOTE "NO VARIABLES IN SELECT RETURNS A SYNTAX ERROR";
select
from MyClass as C;
run; /*whole data set is the group, One line through the grouping path*/
/*left in to prove that this generates a syntax Error*/
/*Must have variables in the select, Syntax Error not logical error*/

/* 2 **
/*S2-Select has: NO Detail - No Group - YES Summary G1- NO Group Statement */
/*H1- NO having clause */
/**/
proc SQL _method _tree;
title1 "overall_avg_height=&overall_avg_height";
title2 "FemAvgH=&FemAvgH and MaleAvgH=&MaleAvgH";
title3 "FemCount=&FemCount and MaleCount=&MaleCount";
footnote1 "We can tell, from the totals and averages produced by the query";
footnote2 "when in the process filters were applied to observations.";
footnote3 "Average, from query, equals overall average (see title), so no filters applied.";
select avg(height) as AvHt, Min(weight) as MinWt, max (height) as MaxHt
from MyClass as C;
run; /*whole data set is the group, One line through the grouping path*/
footnote "";

/* 3 **
/*S3-Select has: NO Detail - YES Group - NO Summary G1- NO Group Statement */
/*H1- NO having clause */
/**/
*can not have group in select and no grouping variable;

/* 4 **
/*S4-Select has: NO Detail - YES Group - YES Summary G1- NO Group Statement */
/*H1- NO having clause */
/**/
*can not have group in select and no grouping variablle;

/* 5 **
/*S5-Select has: YES Detail - No Group - No Summary G1- NO Group Statement */
/*H1- NO having clause */
/**/
proc SQL _method _tree;
footnote "all detail lines pass through detail path";
select name
from MyClass as C;
run;
footnote "";

**ppt exmple 1;
proc SQL _method _tree;
footnote "all detail lines pass through detail path";
select name , sex, age
from MyClass as C;
run;
footnote "";

/* 6 **
/*S6-Select has: YES Detail - No Group - YES Summary G1- NO Group Statement */
/*H1- NO having clause */
/**/
proc SQL _method _tree;
footnote "All detail lines go through detail path and one overall average goes through the summary path.";
footnote2 "support for the two path concept is in the note below:";
footnote3 "NOTE: The query requires remerging summary statistics back with the original data.";
select name, avg(age) as AvAge
from MyClass as C;
run; /*all detail lines through detail path
 and one overall average goes through the summary path */
 /*support for the two path concept is in the note below
 NOTE: The query requires remerging summary statistics back
 with the original data.*/
footnote "";

/* 7 **
/*S7-Select has: YES Detail - YES Group - No Summary G1- NO Group Statement */
/*H1- NO having clause */
/**/
*can not have group in select and no grouping variablle;

/* 8 **
/*S8-Select has: YES Detail - YES Group - YES Summary G1- NO Group Statement */
/*H1- NO having clause */
/**/
*can not have group in select and no grouping variablle;

/* 9 **
/*S1-No variables in Select G2- Yes Group Statement */
/*H1- NO having clause */
/**/
proc SQL _method _tree;
select
from MyClass as C
group by sex;
run; /*Code left in to prove that this generates a syntax Error*/

proc SQL _method _tree;
select
from MyClass as C
group by sex
having sex="M";
run; /*Code left in to prove that this generates a syntax Error*/

/* 10 **
/*S2-Select has: NO Detail - No Group - YES Summary G2- Yes Group Statement */
/*H1- NO having clause */
/**/
*ppt example 2;
proc SQL _method _tree;
footnote1 "two lines, and two variables, go through the grouping path.";
footnote2 "sex is dropped late in the process and not not printed";
select avg(age) as AvAge
from MyClass as C
group by sex;
run;
Footnote1;

/* 11 **
/*S3-Select has: NO Detail - YES Group - NO Summary G2- Yes Group Statement */
/*H1- NO having clause */
/**/
*PPt Example 3;
proc SQL _method _tree;
footnote1 "Lists all the sex values, ordered by sex";
footnote2 "WARNING: A GROUP BY clause has been transformed into an ORDER BY clause ";
footnote3 "because neither the SELECT clause nor the optional HAVING clause of the associated ";
footnote4 "table-expression referenced a summary function. ";
select sex
from MyClass as C
group by sex;
run;
footnote "";

/* 12 **
/*S4-Select has: NO Detail - YES Group - YES Summary G2- Yes Group Statement */
/*H1- NO having clause */
/**/
proc SQL _method _tree;
footnote1 "Two obs through the grouping path, none through detail path. ";
footnote2 "Support for idea that all data goes through groping path is that there is ";
footnote3 "No note in the log that mentions a re-merging w/data afterwards";
select sex, avg(age) as AvgAge
from MyClass as C
group by sex;
run;
footnote "";

/* 13 **
/*S5-Select has: YES Detail - No Group - No Summary G2- Yes Group Statement */
/*H1- NO having clause */
/**/
proc SQL _method _tree;
footnote1 "Lists all Name values, ordered by sex - but does not print sex";
footnote2 "name & sex sent through detial path, file is sorted and sex is dropped";
footnote3 "WARNING: A GROUP BY clause has been transformed into an ORDER BY clause ";
footnote4 "because neither the SELECT clause nor the optional HAVING clause of the associated ";
footnote5 "table-expression referenced a summary function. ";
select name
from MyClass as C
group by sex;
run;
footnote "";

/* 14 **
/*S6-Select has: YES Detail - No Group - YES Summary G2- Yes Group Statement */
/*H1- NO having clause */
/**/
proc SQL _method _tree;
footnote1 "detail lines, plus grouping var (to allow merging), go through detail path";
footnote2 "two obs (and two vars- sex and AvgAge) go through grouping path. ";
footnote3 "After detail and grouping paths merged, the grouping var is dropped";
select name , avg(age)
from MyClass as C
group by sex;
run;
footnote "";

/* 15 **
/*S7-Select has: YES Detail - YES Group - No Summary G2- Yes Group Statement */
/*H1- NO having clause */
/**/
proc SQL _method _tree;
footnote1 "Lists all Name values and sex, ordered by sex ";
footnote2 "name & sex sent through detial path, file is sorted ";
footnote3 "WARNING: A GROUP BY clause has been transformed into an ORDER BY clause ";
footnote4 "because neither the SELECT clause nor the optional HAVING clause of the associated ";
footnote5 "table-expression referenced a summary function. ";
select name , sex
from MyClass as C
group by sex;
run;

/* 16 **
/*S8-Select has: YES Detail - YES Group - YES Summary G2- Yes Group Statement */
/*H1- NO having clause */
/**/
proc SQL _method _tree;
footnote1 "detail lines,plus grouping var, go through detail path";
footnote2 "two obs (Sex and AvgAve) go through grouping path.";
footnote3 "The detial and grouping files are merged, and grouping var NOT dropped";
select name , sex , avg(age) as AvgAge
from MyClass as C
group by sex;
run;
footnote "";

/* 17 **
/*S1-No variables in Select G1- NO Group Statement */
/*H2- having applied to Summary variable */
/**/
Proc SQL;
Select from MyClass having sex="F";
quit;

/*No variables in select produces syntax error*/

/* 18 **
/*S2-Select has: NO Detail - No Group - YES Summary G1- NO Group Statement */
/*H2- having applied to Summary variable */
/**/
proc SQL _method _tree;
footnote1 "Obs passes having test- Group path returns ONE observation";
footnote2 "one obs goes through grouping and filtering applied late";
select avg(height) as AvHgt
from MyClass as C
having AvHgt GT 62;
run;

proc SQL _method _tree;
footnote1 "Obs Fails having test- Group path returns ONE observation";
footnote2 "one obs goes through grouping and filtering applied late";
select avg(height) as AvHgt
from MyClass as C
having AvHgt GT 63;
quit;

/* 19 **
/*S3-Select has: NO Detail - YES Group - NO Summary G1- NO Group Statement */
/*H2- having applied to Summary variable */
/**/
 /*With NO summary,a having can not be applied to the summary*/

/* 20 **
/*S4-Select has: NO Detail - YES Group - YES Summary G1- NO Group Statement */
/*H2- having applied to Summary variable */
/**/
 /*Can not have group in select without a grouping var*/

/* 21 **
/*S5-Select has: YES Detail - No Group - No Summary G1- NO Group Statement */
/*H2- having applied to Summary variable */
/**/
 /*With NO summary,a having can not be applied to the summary*/

/* 22 **
/*S6-Select has: YES Detail - No Group - YES Summary G1- NO Group Statement */
/*H2- having applied to Summary variable */
/**/
proc SQL _method _tree;
footnote1 "All rows selected when comparison is to 62";
footnote2 "Sex for all obs sent through detail path, one obs sent through grouping";
footnote3 "overall average merged and the having is applied late in the process";
select sex, avg(height) as AvHgt
from MyClass as C
having AvHgt GT 62;/*True*/
run;

proc SQL _method _tree;
footnote1 "NO rows selected when comparison is to 63";
footnote2 "Sex for all obs sent through detail path, one obs sent through grouping";
footnote3 "overall average merged and the having is applied late in the process";
footnote4 "when having is applied it filters out all rows";
select sex, avg(height) as AvHgt
from MyClass as C
having AvHgt GT 63; /*False*/
quit;
footnote "";

/* 23 **
/*S7-Select has: YES Detail - YES Group - No Summary G1- NO Group Statement */
/*H2- having applied to Summary variable */
/**/
 /*With NO grouping statement ,can not have grouping var in select*/

/* 24 **
/*S8-Select has: YES Detail - YES Group - YES Summary G1- NO Group Statement */
/*H2- having applied to Summary variable */
/**/
/*With NO grouping statement ,can not have grouping var in select*/

/* 25 **
/*S1-No variables in Select G2- Yes Group Statement */
/*H2- having applied to Summary variable */
/**/
/*syntax error- must have some variable(s) in select clause*/

/* 26 **
/*S2-Select has: NO Detail - No Group - YES Summary G2- Yes Group Statement */
/*H2- having applied to Summary variable */
/**/
proc SQL _method _tree;
footnote1 "Both obs return True for AvHgt GT 60";
footnote2 "Two obs (TWO Variables) sent through grouping- having applied to the obs";
footnote3 "Sex is dropped late in the process";
select avg(height) as AvHgt
from MyClass as C
group by sex
having AvHgt GT 60;
run;

proc SQL _method _tree;
footnote1 "One obs return True for AvHgt GT 63";
footnote2 "Two obs (One Variable) sent through grouping- having applied to the obs";
select avg(height) as AvHgt
from MyClass as C
group by sex
having AvHgt GT 63;
run;

proc SQL _method _tree;
footnote1 "NO obs return True for AvHgt GT 64";
footnote2 "Two obs (One Variable) sent through grouping- having applied to the obs";
footnote3 "Sex is dropped late in the process";
select avg(height) as AvHgt
from MyClass as C
group by sex
having AvHgt GT 64;
quit;

/* 27 **
/*S3-Select has: NO Detail - YES Group - NO Summary G2- Yes Group Statement */
/*H2- having applied to Summary variable */
/**/

/*Can not apply filter to summary if the select does not have a summary*/

/* 28 **
/*S4-Select has: NO Detail - YES Group - YES Summary G2- Yes Group Statement */
/*H2- having applied to Summary variable */
/**/
proc SQL _method _tree;
footnote1 "both obs return True for: having AvHgt GT 60;";
footnote2 "Two obs (Two Variables) sent through grouping- having applied to the obs";
select sex, avg(height) as AvHgt
from MyClass as C
group by sex
having AvHgt GT 60;
run;

proc SQL _method _tree;
footnote1 "ONE obs return True for: having AvHgt GT 63;";
footnote2 "Two obs (Two Variables) sent through grouping- having applied to the obs";
select sex, avg(height) as AvHgt
from MyClass as C
group by sex
having AvHgt GT 63;/*One obs return True*/
run; /*Two obs (Two Variables) sent through grouping- having applied to the obs*/

proc SQL _method _tree;
footnote1 "NO obs return True for: having AvHgt GT 64;";
footnote2 "Two obs (Two Variables) sent through grouping- having applied to the obs";
select sex, avg(height) as AvHgt
from MyClass as C
group by sex
having AvHgt GT 64; /*Zero obs return True*/
quit; /*Two obs sent through grouping- having applied to two the obs*/

/* 29 **
/*S5-Select has: YES Detail - No Group - No Summary G2- Yes Group Statement */
/*H2- having applied to Summary variable */
/**/
/*If no summary in select, can not apply a hving to summary*/

/* 30 **
/*S6-Select has: YES Detail - No Group - YES Summary G2- Yes Group Statement */
/*H2- having applied to Summary variable */
/**/
proc SQL _method _tree;
footnote1 "code is having AvHgt GT 60; and 60 is lower than male or female avg";
footnote2 "name and sex sent through detail path,";
footnote3 "while sex and AvgAgt sent through grouping. ";
footnote4 "After merging, by sex, having applied to the obs & sex is dropped";
select name, avg(height) as AvHgt
from MyClass as C
group by sex
having AvHgt GT 60; /*60 is lower than male or female avg*/
run;

proc SQL _method _tree;
footnote1 "code is having AvHgt GT 63; and Female Avg <63 < Male Avg";
footnote2 "name and sex sent through detail path,";
footnote3 "while sex and AvgAgt sent through grouping. ";
footnote4 "After merging, by sex, having applied to the obs & sex is dropped";
select name, avg(height) as AvHgt
from MyClass as C
group by sex
having AvHgt GT 63;
run;

proc SQL _method _tree;
footnote1 "code is having AvHgt GT 64; Female Avg < Male Avg <64";
footnote2 "name and sex sent through detail path,";
footnote3 "while sex and AvgAgt sent through grouping. ";
footnote4 "After merging, by sex, having applied to the obs & sex is dropped";
select name, avg(height) as AvHgt
from MyClass as C
group by sex
having AvHgt GT 64;
quit;

/* 31 **
/*S7-Select has: YES Detail - YES Group - No Summary G2- Yes Group Statement */
/*H2- having applied to Summary variable */
/**/
/*Can not apply having to summary, if there is no summary variable in select*/

/* 32 **
/*S8-Select has: YES Detail - YES Group - YES Summary G2- Yes Group Statement */
/*H2- having applied to Summary variable */
/**/
proc SQL _method _tree;
footnote1 "Code is: having AvHgt GT 60; and 60 is lower than male or female avg";
footnote2 "name and sex sent through detail path,";
footnote3 "while sex and AvgAgt sent through grouping. ";
footnote4 "After merging, by sex, having applied to the obs";
select name, sex, avg(height) as AvHgt
from MyClass as C
group by sex
having AvHgt GT 60;
run;

proc SQL _method _tree;
footnote1 "Code is: having AvHgt GT 63; Female Avg <63 < Male Avg";
footnote2 "name and sex sent through detail path,";
footnote3 "while sex and AvgAgt sent through grouping. ";
footnote4 "After merging, by sex, having applied to the obs";
select name, sex, avg(height) as AvHgt
from MyClass as C
group by sex
having AvHgt GT 63;
run;

proc SQL _method _tree;
footnote1 "Code is: having AvHgt GT 64; /*Female Avg < Male Avg <63";
footnote2 "name and sex sent through detail path,";
footnote3 "while sex and AvgAgt sent through grouping. ";
footnote4 "After merging, by sex, having applied to the obs";
select name, sex, avg(height) as AvHgt
from MyClass as C
group by sex
having AvHgt GT 64;
quit;

/* 33 **
/*S1-No variables in Select G1- NO Group Statement */
/*H3- having applied to Group variable */
/**/
/*Must have variables in Select, or SAS returns a syntax error*/

/* 34 **
/*S2-Select has: NO Detail - No Group - YES Summary G1- NO Group Statement */
/*H3- having applied to Group variable */
/**/
proc SQL _method _tree;
footnote "The average is key to understanding this. All Obs are used to calculate average & having is applied late. ";
footnote2 "The average shows all obs were used ot calculate average and the having was NOT turned into a where";
footnote3 "For each obs, sex sent through detail path,";
footnote4 "while AvgAgt (One var and One Obs) sent through grouping.";
footnote5 "After merging having applied to the obs";
footnote6 "tree shows that -LITC('M') was input to the aggregation";
select avg(height)
from MyClass as C
having Sex ="M" and Name NE "Mike";
quit;
 footnote "";

/* 35 **
/*S3-Select has: NO Detail - YES Group - NO Summary G1- NO Group Statement */
/*H3- having applied to Group variable */
/**/
/*can not be coded - what makes a variable a group in the select statement
 is that it is part of a group statement*/

/* 36 **
/*S4-Select has: NO Detail - YES Group - YES Summary G1- NO Group Statement */
/*H3- having applied to Group variable */
/**/
/*can not be coded - what makes a variable a group in the select statement
 is that it is part of a group statement*/

/* 37 **
/*S5-Select has: YES Detail - No Group - No Summary G1- NO Group Statement */
/*H3- having applied to Group variable */
/**/
/*can not be coded - what makes a variable a group in the Having statements
 is that it is part of a group statement*/

/* 38 **
/*S6-Select has: YES Detail - No Group - YES Summary G1- NO Group Statement */
/*H3- having applied to Group variable */
/**/
/*can not be coded - what makes a variable a group in the Having statements
 is that it is part of a group statement*/

/* 39 **
/*S7-Select has: YES Detail - YES Group - No Summary G1- NO Group Statement */
/*H3- having applied to Group variable */
/**/
/*can not be coded - what makes a variable a group in the Select and Having statements
 is that it is part of a group statement*/

/* 40 **
/*S8-Select has: YES Detail - YES Group - YES Summary G1- NO Group Statement */
/*H3- having applied to Group variable */
/**/
/*can not be coded - what makes a variable a group in the Select and Having statements
 is that it is part of a group statement*/

/* 41 **
/*S1-No variables in Select G2- Yes Group Statement */
/*H3- having applied to Group variable */
/**/
/*Must have variables in select or SAS returns a syntax error*/

/* 42 **
/*S2-Select has: NO Detail - No Group - YES Summary G2- Yes Group Statement */
/*H3- having applied to Group variable */
/**/
proc SQL _method _tree;
footnote "The average is key to understanding this. Obs are used to calculate average for M & F & having is applied late. ";
footnote2 "Tree suggests having is applies at AGGR level, not data engine. The having was NOT turned into a where!";
footnote3 "";
footnote4 "One var and TWO Obs sent through grouping.";
footnote5 "having applied to the obs lae in the process";
footnote6 "tree shows that -LITC('M') was input to the aggregation";
select avg(Age)
from MyClass as C
group by sex
having Sex ="M" ;
quit;
 footnote "";

/* 43 **
/*S3-Select has: NO Detail - YES Group - NO Summary G2- Yes Group Statement */
/*H3- having applied to Group variable */
/**/
proc SQL _method _tree;
footnote1 "Lists all sex values filtered by the having, ordered by sex ";
footnote2 "sex sent through detail path, file is sorted and having filters the obs late";
footnote3 "WARNING: A GROUP BY clause has been transformed into an ORDER BY clause ";
footnote4 "because neither the SELECT clause nor the optional HAVING clause of the associated ";
footnote5 "table-expression referenced a summary function. ";
select Sex
from MyClass as C
group by sex
having Sex ="M" ;
quit;
 footnote "";

/* 44 **
/*S4-Select has: NO Detail - YES Group - YES Summary G2- Yes Group Statement */
/*H3- having applied to Group variable */
/**/
proc SQL _method _tree;
footnote1 "No obs pass down the Detail path";
footnote2 "On Group path, SAS creates two variables (sex and AvAge)";
footnote3 "The grouping file has two lines and the having filter happens late";
footnote4 "";
select Sex, avg(age) as AvAge
from MyClass as C
group by sex
having Sex ="M" ;
quit;
 footnote "";

proc SQL _method _tree;
footnote1 "No obs pass down the Detail path";
footnote2 "On Group path, SAS creates three variables (sex, age and AvHgt)";
footnote3 "The group file has a row for each combo of Sex*Age ";
footnote4 "The having filter happens late";
select Sex, avg(Height) as AvHgt
from MyClass as C
group by sex, age
having Sex ="M" ;
quit;
 footnote "";

/* 45 **
/*S5-Select has: YES Detail - No Group - No Summary G2- Yes Group Statement */
/*H3- having applied to Group variable */
/**/
proc SQL _method _tree;
footnote1 "Output lists all the name values for males";
footnote2 "names pass down the detail path - no group path created- see note below";
footnote3 "Tree suggests that the filter is passed to the data engine";
footnote4 " but sorting still occurs (by sex - pretty useless operation)";
footnote5 "WARNING: A GROUP BY clause has been transformed into an ORDER BY clause ";
footnote6 "because neither the SELECT clause nor the optional HAVING clause of the associated ";
footnote7 "table-expression referenced a summary function. ";
select name
from MyClass as C
group by sex
having Sex ="M" ;
quit;
 footnote "";

proc SQL _method _tree;
footnote1 "Output lists all the name values for males";
footnote2 "names pass down the detail path - no group path created- see note below";
footnote3 "Tree suggests that the filter is passed to the data engine";
footnote4 " but sorting still occurs (by sex and age)";
footnote5 "WARNING: A GROUP BY clause has been transformed into an ORDER BY clause ";
footnote6 "because neither the SELECT clause nor the optional HAVING clause of the associated ";
footnote7 "table-expression referenced a summary function. ";
select name
from MyClass as C
group by sex, age
having Sex ="M" ;
quit;
 footnote "";

/* 46 **
/*S6-Select has: YES Detail - No Group - YES Summary G2- Yes Group Statement */
/*H3- having applied to Group variable */
/**/

proc SQL _method _tree;
footnote1 "Output lists all the name values for males and avg age for males";
footnote2 "names & sex pass down the detail path ";
footnote3 "Group path creates a file (Sex and AvgAge) with 2 vars and 2 rows";
footnote4 "Summary stats are merged back in and having filter is applied late";
select name , avg(age) AvgAge
from MyClass as C
group by sex
having Sex ="M" ;
quit;
 footnote "";

/* 47 **
/*S7-Select has: YES Detail - YES Group - No Summary G2- Yes Group Statement */
/*H3- having applied to Group variable */
/**/
proc SQL _method _tree;
footnote1 "Output lists all the name & sex values for obs were sex=M";
footnote2 "names and sex pass down the detail path - no group path created- see note below";
footnote3 "Tree suggests that the filter is passed to the data engine";
footnote4 " but sorting still occurs (by sex and age)";
footnote5 "WARNING: A GROUP BY clause has been transformed into an ORDER BY clause ";
footnote6 "because neither the SELECT clause nor the optional HAVING clause of the associated ";
footnote7 "table-expression referenced a summary function. ";
select name , Sex
from MyClass as C
group by sex
having Sex ="M" ;
quit;
 footnote "";

/* 48 **
/*S8-Select has: YES Detail - YES Group - YES Summary G2- Yes Group Statement */
/*H3- having applied to Group variable */
/**/

proc SQL _method _tree;
footnote1 "Output lists all the name & sex values for obs were sex=M & avg age for males";
footnote2 "names and sex pass down the detail path ";
footnote3 "Group path creates a file with 2 vars (sex & AvgAge) and 2 obs";
footnote4 "Tree suggests that the Having filter is applied late in the process";
footnote5 "Where sex="M" would be applied earlier";
select name , Sex , avg(age) as AvgAge
from MyClass as C
group by sex
having Sex ="M" ;
quit;
 footnote "";

/* 49 **
/*S1-No variables in Select G1- NO Group Statement */
/*H4- having applied to Group and Summary Variables */
/**/
/*Must have variables in select or SAS returns a syntax error*/

/* 50 **
/*S2-Select has: NO Detail - No Group - YES Summary G1- NO Group Statement */
/*H4- having applied to Group and Summary Variables */
/**/
/*If we do not have a group variable,we can not apply a having to the group variable*/

/* 51 **
/*S3-Select has: NO Detail - YES Group - NO Summary G1- NO Group Statement */
/*H4- having applied to Group and Summary Variables */
/**/
/*If we do not have a group variable,we can not have a group in the select*/

/* 52 **
/*S4-Select has: NO Detail - YES Group - YES Summary G1- NO Group Statement */
/*H4- having applied to Group and Summary Variables */
/**/
/*If we do not have a group variable,we can not have a group in the select*/

/* 53 **
/*S5-Select has: YES Detail - No Group - No Summary G1- NO Group Statement */
/*H4- having applied to Group and Summary Variables */
/**/
/*If we do not have a group variable,we can not apply a having to the group varible*/

/* 54 **
/*S6-Select has: YES Detail - No Group - YES Summary G1- NO Group Statement */
/*H4- having applied to Group and Summary Variables */
/**/
/*If we do not have a group variable,we can not apply a having to the group varible*/

/* 55 **
/*S7-Select has: YES Detail - YES Group - No Summary G1- NO Group Statement */
/*H4- having applied to Group and Summary Variables */
/**/
/*If we do not have a group variable,we can not apply a having to the group varible*/

/* 56 **
/*S8-Select has: YES Detail - YES Group - YES Summary G1- NO Group Statement */
/*H4- having applied to Group and Summary Variables */
/**/
/*If we do not have a group variable,we can not apply a having to the group varible*/

/* 57 **
/*S1-No variables in Select G2- Yes Group Statement */
/*H4- having applied to Group and Summary Variables */
/**/
/*If we do not have a group variable,we can not apply a having to the group varible*/

/* 58 **
/*S2-Select has: NO Detail - No Group - YES Summary G2- Yes Group Statement */
/*H4- having applied to Group and Summary Variables */
/**/
proc SQL _method _tree;
footnote1 "Detail path never activates";
footnote2 "Group path creates a file with 2 vars (sex and AvgAge) and 2 rows ";
footnote3 "Tree suggests that having filtering is applied late in the process";
footnote4 "";
select avg(age) as AvgAge
from MyClass as C
group by sex
having Sex ="M" and AvgAge GT 13.3 ;
quit;
 footnote "";

proc SQL _method _tree;
footnote1 "Detail path never activates";
footnote2 "Group path creates a file with 2 vars (sex and AvgAge) and 2 rows ";
footnote3 "Tree suggests that having filtering is applied late in the process";
footnote4 "";
select avg(age) as AvgAge
from MyClass as C
group by sex
having Sex ="F" and AvgAge GT 13.3 ;
quit;
 footnote "";

/* 59 **
/*S3-Select has: NO Detail - YES Group - NO Summary G2- Yes Group Statement */
/*H4- having applied to Group and Summary Variables */
/**/
/*If we do not have a summary variable in the select,
 we can not apply a having to the summary varibale*/

/* 60 **
/*S4-Select has: NO Detail - YES Group - YES Summary G2- Yes Group Statement */
/*H4- having applied to Group and Summary Variables */
/**/
proc SQL _method _tree;
footnote1 "No activity in the detail path";
footnote2 "The grouping path creates a 2 var (sex & AvgAge) by 2 obs data set";
footnote3 "All the girl obs were used ot calculate the average";
footnote4 "Tree suggest that the having filtering is applied late in the process";
select sex, avg(age) as AvgAge
from MyClass as C
group by sex
having Sex ="F" and AvgAge GT 12 ;
quit;
 footnote "";

 proc SQL _method _tree;
footnote1 "No activity in the detail path";
footnote2 "The grouping path creates a 2 var (sex & AvgAge) by 2 obs data set";
footnote3 "All the girl obs were used to calculate the average";
footnote4 "Tree suggest that the having filtering is applied late in the process";
select sex, avg(age) as AvgAge
from MyClass as C
group by sex
having Sex ="F" and AvgAge LT 12 ;
quit;
 footnote "";

/* 61 **
/*S5-Select has: YES Detail - No Group - No Summary G2- Yes Group Statement */
/*H4- having applied to Group and Summary Variables */
/**/
/*If we do not have a summary variable in the select,
 we can not apply a having to the summary variable*/

/* 62 **
/*S6-Select has: YES Detail - No Group - YES Summary G2- Yes Group Statement */
/*H4- having applied to Group and Summary Variables */
/**/
proc SQL _method _tree;
footnote1 "A List of male/female names and sexes go on detail path";
footnote2 "The grouping path creates a 2 var (sex & AvgAge) by 2 obs data set";
footnote3 "The gruping and the detail files are merged by sex, then sex is dropped";
footnote4 "The having filter is applies late in the process";
Footnote5 "The average age is the average age for all boys";
select name, avg(age) as AvgAge
from MyClass as C
group by sex
having Sex ="M" and AvgAge GT 12 ;
quit;
 footnote "";

/* 63 **
/*S7-Select has: YES Detail - YES Group - No Summary G2- Yes Group Statement */
/*H4- having applied to Group and Summary Variables */
/**/
/*If we do not have a summary variable in the select,
 we can not apply a having to the summary variable*/

/* 64 **
/*S8-Select has: YES Detail - YES Group - YES Summary G2- Yes Group Statement */
/*H4- having applied to Group and Summary Variables */
/**/
proc SQL _method _tree;
footnote1 "A List of male/female names and sexes go on detail path";
footnote2 "The grouping path creates a 2 var (sex & AvgAge) by 2 obs data set";
footnote3 "The gruping and the detail files are merged by sex";
footnote4 "The having filter is applies late in the process";
Footnote5 "The average age is the average age for all boys";
select name, sex, avg(age) as AvgAge
from MyClass as C
group by sex
having Sex ="M" and AvgAge GT 12 ;
quit;
 footnote "";

proc SQL _method _tree;
footnote1 "A List of male/female names and sexes go on detail path";
footnote2 "The grouping path creates a 2 var (sex & AvgAge) by 2 obs data set";
footnote3 "The gruping and the detail files are merged by sex";
footnote4 "The having filter is applies late in the process";
Footnote5 "The average age is the average age for all boys";
select name, sex, avg(age) as AvgAge
from MyClass as C
group by sex
having Sex ="F" and AvgAge GT 13.5 ;
quit;
 footnote "";

/* 65 **
/*S1-No variables in Select G1- NO Group Statement */
/*H5- Having applied to Detail Data */
/**/
/*we must have variables in the select, or SAS returns an error*/

/* 66 **
/*S2-Select has: NO Detail - No Group - YES Summary G1- NO Group Statement */
/*H5- Having applied to Detail Data */
/**/
proc SQL _method _tree;
footnote1 "A List of all male/female names go on detail path";
footnote2 "The grouping path creates a 1 var (AvgAge) by 1 obs data set";
footnote3 "The gruping is done on the whole data set and merged with the detial file";
footnote4 "After merging the name varaible is dropped";
footnote5 "The having filter is applies late in the process";
Footnote6 "After merging the name varaible is dropped";
select /*name,*/ avg(age) as AvgAge
from MyClass as C
having substr(name,1,1)in ("J","M") ;
quit;
 footnote "";

/* 67 **
/*S3-Select has: NO Detail - YES Group - NO Summary G1- NO Group Statement */
/*H5- Having applied to Detail Data */
/**/
/*if we do not have a grouping statement,
 we cna not have a grouping variable on the select*/

/* 68 **
/*S4-Select has: NO Detail - YES Group - YES Summary G1- NO Group Statement */
/*H5- Having applied to Detail Data */
/**/
/*if we do not have a grouping statement,
 we cna not have a grouping variable on the select*/

/* 69 **
/*S5-Select has: YES Detail - No Group - No Summary G1- NO Group Statement */
/*H5- Having applied to Detail Data */
/**/
proc SQL _method _tree;
footnote1 "A List of names having substr(name,1,1)in ('J','M') go on detail path";
footnote2 "The grouping path creates a 1 var (AvgAge) by 1 obs data set";
footnote3 "Tree suggests that the having was changed to a where";
footnote4 "and applied early - before the first occurrance of SRC";
select name
from MyClass as C
having substr(name,1,1)in ("J","M") ;
quit;
 footnote "";

/* 70 **
/*S6-Select has: YES Detail - No Group - YES Summary G1- NO Group Statement */
/*H5- Having applied to Detail Data */
/**/
proc SQL _method _tree;
footnote1 "A List of ALL names having substr(name,1,1)in ('J','M') goes on detail path";
footnote2 "The grouping path creates a 1 var (AvgAge) by 1 obs data set";
footnote3 "Average shown is average for whole data set- no filtering before calculation of avg";
footnote4 "The average was merged to all the names";
footnote5 "the having was applied late in the process";
select name , avg(age) as AvgAge
from MyClass as C
having substr(name,1,1)in ("J","M") ;
quit;
 footnote "";

/* 71 **
/*S7-Select has: YES Detail - YES Group - No Summary G1- NO Group Statement */
/*H5- Having applied to Detail Data */
/**/
/*if we do not have a grouping statement,
 we cna not have a grouping variable on the select*/

/* 72 **
/*S8-Select has: YES Detail - YES Group - YES Summary G1- NO Group Statement */
/*H5- Having applied to Detail Data */
/**/
/*if we do not have a grouping statement,
 we can not have a grouping variable on the select*/

/* 73 **
/*S1-No variables in Select G2- Yes Group Statement */
/*H5- Having applied to Detail Data */
/**/
/*If we have no variables in the select statement, SAS returns a syntax error*/

/* 74 **
/*S2-Select has: NO Detail - No Group - YES Summary G2- Yes Group Statement */
/*H5- Having applied to Detail Data */
/**/
proc SQL _method _tree;
footnote1 "A List of ALL names & sex goes on detail path";
footnote2 "The grouping path creates a 2 var (sex & AvgAge) by 2 obs data set";
footnote3 "Averages shown is average for all boys and all girls! NO filtering before calculation of avg";
footnote4 "The averages were merged to all the names by sex, and sex was dropped";
footnote5 "the having was applied late in the process, and the name variable was dropped";
select avg(age) as AvgAge
from MyClass as C
group by sex
having substr(name,1,1)in ("J","M") ;
quit;
 footnote "";

/* 75 **
/*S3-Select has: NO Detail - YES Group - NO Summary G2- Yes Group Statement */
/*H5- Having applied to Detail Data */
/**/
proc SQL _method _tree;
footnote1 "A List of ALL names & sex goes on detail path";
footnote2 "Since ther are no summary stats on select, No obs go to the grouping path";
footnote3 "The having was applied late in the process, and the name variable was dropped";
footnote4 "WARNING: A GROUP BY clause has been transformed into an ORDER BY clause ";
footnote5 "because neither the SELECT clause nor the optional HAVING clause of the associated ";
footnote6 "table-expression referenced a summary function. ";
select sex
from MyClass as C
group by sex
having substr(name,1,1)in ("J","M") ;
quit;
 footnote "";

/* 76 **
/*S4-Select has: NO Detail - YES Group - YES Summary G2- Yes Group Statement */
/*H5- Having applied to Detail Data */
/**/
proc SQL _method _tree;
footnote1 "A List of ALL names & sex goes on detail path";
footnote2 "The grouping path creates a 2 var (sex & AvgAge) by 2 obs data set";
footnote3 "Averages shown is average for all boys and all girls! NO filtering before calculation of avg";
footnote4 "The averages were merged to all the names by sex, and sex was retained";
footnote5 "The having was applied late in the process, and the name variable was dropped";
select sex, Avg(age) as AvgAge
from MyClass as C
group by sex
having substr(name,1,1)in ("J","M") ;
quit;
 footnote "";

/* 77 **
/*S5-Select has: YES Detail - No Group - No Summary G2- Yes Group Statement */
/*H5- Having applied to Detail Data */
/**/
proc SQL _method _tree;
footnote1 "If no summary variable in select, groups are changed to order";
footnote2 "Tree suggests having is changed to a where and applied early";
select name, sex
from MyClass as C
group by sex
having substr(name,1,1)in ("J","M") ;
quit;
 footnote "";

/* 78 **
/*S6-Select has: YES Detail - No Group - YES Summary G2- Yes Group Statement */
/*H5- Having applied to Detail Data */
/**/
proc SQL _method _tree;
footnote1 "Averages are for all girls and all bys- no obs filter before average calculation";
footnote2 "All names & sex are sent to detail path";
footnote3 "Group path creates a 2 var (aex & avgAge) by 2 row data set";
footnote4 "Averages are merged in by sex";
footnote5 "Tree suggests that the having filter is applied late in the process";
select name, avg(age) as AvgAge
from MyClass as C
group by sex
having substr(name,1,1)in ("J","M") ;
quit;
 footnote "";

/* 79 **
/*S7-Select has: YES Detail - YES Group - No Summary G2- Yes Group Statement */
/*H5- Having applied to Detail Data */
/**/
proc SQL _method _tree;
footnote1 "A List of FILTERED names & sex goes on detail path";
footnote2 "Since there are no summary stats on select, No obs go to the grouping path";
footnote3 "since no summary function on select, group changed to Sort";
footnote4 "having changed to a where AND APPLIED EARLY";
footnote5 "WARNING: A GROUP BY clause has been transformed into an ORDER BY clause ";
footnote6 "because neither the SELECT clause nor the optional HAVING clause of the associated ";
footnote7 "table-expression referenced a summary function. ";
select name, sex
from MyClass as C
group by sex
having substr(name,1,1)in ("J","M") ;
quit;
 footnote "";

/* 80 **
/*S8-Select has: YES Detail - YES Group - YES Summary G2- Yes Group Statement */
/*H5- Having applied to Detail Data */
/**/
/*Example*/
proc SQL _method _tree;
footnote1 "A List of UN-FILTERED names & sex goes on detail path";
footnote2 "Since there are no Where clauses, all obs flow into the grouping path";
footnote3 "After the groupng is done, the two paths merge- having all obs in detal path";
footnote4 "having changed applied after the merge - detail obd filtered";
footnote5 "the average shown in the listing is the average for all obs in RAW";
footnote6 "because neither the SELECT clause nor the optional HAVING clause of the associated ";
footnote7 "table-expression referenced a summary function. ";
select name, sex, mean(age)
from MyClass as C
group by sex
having substr(name,1,1)in ("J","M") ;
quit;
 footnote "";

/* 81 **
/*S1-No variables in Select G1- NO Group Statement */
/*H6- Having applied to Summary and Detail Data */
/**/
/*If no variables in select, SAS returns a syntax Error*/

/* 82 **
/*S2-Select has: NO Detail - No Group - YES Summary G1- NO Group Statement */
/*H6- Having applied to Summary and Detail Data */
/**/
proc SQL _method _tree;
footnote1 "The detal variable(name) in the having sends all names & sex down detail path";
footnote2 "Since there is a summary on select, all obs go into the grouping path";
footnote3 "since there is no grouping var, all vars go on one group";
footnote4 "Overall avg is merged to all obs and fname filtering is applied";
select mean(age) as mean_age
from MyClass as C
having substr(name,1,1)in ("J","M") and mean_age GT 12;
quit;
 footnote "";

/* 83 **
/*S3-Select has: NO Detail - YES Group - NO Summary G1- NO Group Statement */
/*H6- Having applied to Summary and Detail Data */
/**/
/*If there is no group statement we cn not have a group variable on the select */

/* 84 **
/*S4-Select has: NO Detail - YES Group - YES Summary G1- NO Group Statement */
/*H6- Having applied to Summary and Detail Data */
/**/
/*If there is no group statement we cn not have a group variable on the select */

/* 85 **
/*S5-Select has: YES Detail - No Group - No Summary G1- NO Group Statement */
/*H6- Having applied to Summary and Detail Data */
/**/

proc SQL _method _tree;
footnote1 "witout a summary in the select, you can not apply having to summary";
footnote2 "SAS returns syntax error";
footnote3 "";
footnote4 "";
select name
from MyClass as C
having substr(name,1,1)in ("J","M") and mean_age GT 12;
quit;
 footnote "";

/* 86 **
/*S6-Select has: YES Detail - No Group - YES Summary G1- NO Group Statement */
/*H6- Having applied to Summary and Detail Data */
/**/

proc SQL _method _tree;
footnote1 "detail(name) in select or in having sends names to detail";
footnote2 "since there is no where, all names go to detial path";
footnote3 "since there is no where, all obs go to group path";
footnote4 "since there is no group statement, there is one group";
footnote5 "after merging, the having is applied";
footnote6 "";
footnote7 "";

select name, avg(age) as mean_age
from MyClass as C
having substr(name,1,1)in ("J","M") and mean_age GT 14;
/*having substr(name,1,1)in ("J","M") and mean_age GT 14; */
quit;
 footnote "";

/* 87 **
/*S7-Select has: YES Detail - YES Group - No Summary G1- NO Group Statement */
/*H6- Having applied to Summary and Detail Data */
/**/
/*without a group statement, we can not have a group var in the select*/

/* 88 **
/*S8-Select has: YES Detail - YES Group - YES Summary G1- NO Group Statement */
/*H6- Having applied to Summary and Detail Data */
/**/
/*without a group statement, we can not have a group var in the select*/

/* 89 **
/*S1-No variables in Select G2- Yes Group Statement */
/*H6- Having applied to Summary and Detail Data */
/**/
/*without variables in the select statement, SAS returns a syntax error*/

/* 90 **
/*S2-Select has: NO Detail - No Group - YES Summary G2- Yes Group Statement */
/*H6- Having applied to Summary and Detail Data */
/**/

proc SQL _method _tree;
footnote1 "detail(name) in select or in having sends names to detail";
footnote2 "since there is no where, all names go to detail path";
footnote3 "since there is no where, all obs go to group path";
footnote4 "since there is a group by sex statement, there are two groups (averages)";
footnote5 "after merging by sex, sex is dropped, and the having is applied";
footnote6 "Averages shown are the averages for thw all maes and females";
footnote7 "";

select avg(age) as mean_age, sex
from MyClass as C
group by sex
having substr(name,1,1)in ("J","M") and mean_age GT 13;
/*having substr(name,1,1)in ("J","M") and mean_age GT 14; */
quit;
 footnote "";

/* 91 **
/*S3-Select has: NO Detail - YES Group - NO Summary G2- Yes Group Statement */
/*H6- Having applied to Summary and Detail Data */
/**/

proc SQL _method _tree;
footnote1 "SYNTAX ERROR ";
footnote2 "The having wants to see a variable named mean_age ";
footnote3 "The variable is not created in select, and having can not create a summary";
footnote4 "since there is no where, all obs go to group path";

select sex
from MyClass as C
group by sex
having substr(name,1,1)in ("J","M") and mean_age GT 13;
/*having substr(name,1,1)in ("J","M") and mean_age GT 14; */
quit;
 footnote "";

/* 92 **
/*S4-Select has: NO Detail - YES Group - YES Summary G2- Yes Group Statement */
/*H6- Having applied to Summary and Detail Data */
/**/
/*with no group statement, we can not put a group var in the select*/

/* 93 **
/*S5-Select has: YES Detail - No Group - No Summary G2- Yes Group Statement */
/*H6- Having applied to Summary and Detail Data */
/**/
/*with no summary variable in the select,
 you can not filer on a summary statement in the having*/
/*the ahving will not create a summary variable, think of the SQL path*/

/* 94 **
/*S6-Select has: YES Detail - No Group - YES Summary G2- Yes Group Statement */
/*H6- Having applied to Summary and Detail Data */
/**/
proc SQL _method _tree;
footnote1 "Detail, in select, sends all obs through detail path";
footnote2 "summary in select sends all obs through grouping path, creating a 1 by 1 file";
footnote3 "the merge happens and then obs get filtered";
footnote4 "since there is no where, all obs go to group path";

select name, avg(age) as mean_age
from MyClass as C
having substr(name,1,1)in ("J","M") and mean_age GT 13;
/*having substr(name,1,1)in ("J","M") and mean_age GT 14; */
quit;
 footnote "";

/* 95 **
/*S7-Select has: YES Detail - YES Group - No Summary G2- Yes Group Statement */
/*H6- Having applied to Summary and Detail Data */
/**/
/*No summary in select, so no obs sent to grouping
 - having does not create summary file*/

proc SQL _method _tree;
footnote1 "No summary in select, so no obs sent to grouping - having does not create summary file";
footnote2 "Syntax error";

select name, sex
from MyClass as C
having substr(name,1,1)in ("J","M") and mean_age GT 13;
/*having substr(name,1,1)in ("J","M") and mean_age GT 14; */
quit;
 footnote "";

/* 96 **
/*S8-Select has: YES Detail - YES Group - YES Summary G2- Yes Group Statement */
/*H6- Having applied to Summary and Detail Data */
/**/
proc SQL _method _tree;
footnote1 "Detail in select sends all obs into setail path";
footnote2 "Avg in select sends all obs through the grouping path (1 by 1 file)";
footnote3 "the average shown is for all obs";
footnote4 "Details and summary are merged and having applies filtering";
footnote5 "";
footnote6 "";

select name, sex , avg(age) as Avg_age
from MyClass as C
having substr(name,1,1)in ("J","M") and Avg_age GT 13;
/*having substr(name,1,1)in ("J","M") and avg_age GT 14; */
quit;
 footnote "";

/* 97 **
/*S1-No variables in Select G1- NO Group Statement */
/*H7- Having applied to Group and Detail Data */
/**/
/*If no variables in the select, SAs returns a syntax error*/

/* 98 **
/*S2-Select has: NO Detail - No Group - YES Summary G1- NO Group Statement */
/*H7- Having applied to Group and Detail Data */
/**/
/*with no group statement, we can not apply a having to the group statement*/

/* 99 **
/*S3-Select has: NO Detail - YES Group - NO Summary G1- NO Group Statement */
/*H7- Having applied to Group and Detail Data */
/**/
/*with no group statement, we can not have a group in the statement*/

/*100 **
/*S4-Select has: NO Detail - YES Group - YES Summary G1- NO Group Statement */
/*H7- Having applied to Group and Detail Data */
/**/
/*with no group statement, we do not have a group in the having*/

/*101 **
/*S5-Select has: YES Detail - No Group - No Summary G1- NO Group Statement */
/*H7- Having applied to Group and Detail Data */
/**/
/*with no group statement, we do not have a group in the having*/

/*102 **
/*S6-Select has: YES Detail - No Group - YES Summary G1- NO Group Statement */
/*H7- Having applied to Group and Detail Data */
/**/
/*with no group statement, we do not have a group in the having*/

/*103 **
/*S7-Select has: YES Detail - YES Group - No Summary G1- NO Group Statement */
/*H7- Having applied to Group and Detail Data */
/**/
/*with no group statement, we do not have a group in the having*/

/*104 **
/*S8-Select has: YES Detail - YES Group - YES Summary G1- NO Group Statement */
/*H7- Having applied to Group and Detail Data */
/**/
/*with no group statement, we do not have a group in the having*/

/*105 **
/*S1-No variables in Select G2- Yes Group Statement */
/*H7- Having applied to Group and Detail Data */
/**/
/*with no variables in the select, SAS returns an error*/

/*106 **
/*S2-Select has: NO Detail - No Group - YES Summary G2- Yes Group Statement */
/*H7- Having applied to Group and Detail Data */
/**/
proc SQL _method _tree;
footnote1 "No Detail var in select, but substring, in having, sends all obs through detail path";
footnote2 "summary in select sends sex for all obs through grouping path, creating a 2 (sex & AvgAge) var by 2 obs file";
footnote3 "the merge happens and then obs get filtered";
footnote4 "since there is no where, all obs go to group path";
footnote5 "NOTE: The query requires remerging summary statistics back with the original data.";
footnote5 "We get a line for each child with the right name AND whose gender's AvgAge meets the having";
select avg(age) as AvgAge
from MyClass as C
group by sex
having substr(name,1,1)in ("J","M") and AvgAge GT 13;
having substr(name,1,1)in ("J","M") and mean_age GT 14;
quit;
 footnote "";

/*107 **
/*S3-Select has: NO Detail - YES Group - NO Summary G2- Yes Group Statement */
/*H7- Having applied to Group and Detail Data */
/**/
proc SQL _method _tree;
footnote1 "No Detail var in select, but substring, in having, sends all obs, and their sex, through detail path";
footnote2 "Since no summary var in select, no obs go to the summary path ";
footnote3 "WARNING: A GROUP BY clause has been transformed into an ORDER BY clause because neither the SELECT clause nor the";
footnote4 "optional HAVING clause of the associated table-expression referenced a summary function.";
footnote5 "Since no Summary function in select, group by turns into an order by";
select sex
from MyClass as C
group by sex
having substr(name,1,1)in ("J","M") and Sex="F";

quit;
 footnote "";

/*108 **
/*S4-Select has: NO Detail - YES Group - YES Summary G2- Yes Group Statement */
/*H7- Having applied to Group and Detail Data */
/**/
proc SQL _method _tree;
footnote1 "No Detail var in select, but substring, in having, sends names for all obs, and their sex, through detail path";
footnote2 "avg function sends all obs to the summary path ";
footnote3 "Avg age (by gender) is merged, by gender, onto all names ";
footnote4 "Having filtering is applied";
footnote5 "NOTE: The query requires remerging summary statistics back with the original data.";
select sex, avg(age) as AvgaAge
from MyClass as C
group by sex
having substr(name,1,1)in ("J","M") and Sex="F";

quit;
 footnote "";

/*109 **
/*S5-Select has: YES Detail - No Group - No Summary G2- Yes Group Statement */
/*H7- Having applied to Group and Detail Data */
/**/
proc SQL _method _tree;
footnote1 "Detail var in select sends all names, having adds sex var to detail path";
footnote2 "Since no summary var in select, no obs go to the summary path ";
footnote3 "WARNING: A GROUP BY clause has been transformed into an ORDER BY clause because neither the SELECT clause nor the";
footnote4 "optional HAVING clause of the associated table-expression referenced a summary function.";
footnote5 "Since no Summary function in select, group by turns into an order by";
select name
from MyClass as C
group by sex
having substr(name,1,1)in ("J","M") and Sex="F";

quit;
 footnote "";

/*110 **
/*S6-Select has: YES Detail - No Group - YES Summary G2- Yes Group Statement */
/*H7- Having applied to Group and Detail Data */
/**/
proc SQL _method _tree;
footnote1 "Detail var in select sends all names, group adds sex var to detail path";
footnote2 "AvgAge sends all obs to to the summary path ";
footnote3 "AvgAge merged with detail and having subsetting is applied";
select name, avg(age) as AvgAge
from MyClass as C
group by sex
having substr(name,1,1)in ("J","M") and Sex="F";

quit;
 footnote "";

/*111 **
/*S7-Select has: YES Detail - YES Group - No Summary G2- Yes Group Statement */
/*H7- Having applied to Group and Detail Data */
/**/
proc SQL _method _tree;
footnote1 "Tree suggests that the having was changed to a where and applied early";

footnote3 "Detail var (name) in select sends all names, group adds sex var to detail path";
footnote4 "Since no summary function in select, no obs go to group path - group by changed to order by";
footnote5 "AvgAge merged with detail and having subsetting is applied";
footnote6 "WARNING: A GROUP BY clause has been transformed into an ORDER BY clause because neither the SELECT clause nor the";
footnote7 "optional HAVING clause of the associated table-expression referenced a summary function.";
footnote8 "Since no Summary function in select, group by turns into an order by";

select name, Sex
from MyClass as C
group by sex
having substr(name,1,1)in ("J","M") and Sex="F";

quit;
 footnote "";

/*112 **
/*S8-Select has: YES Detail - YES Group - YES Summary G2- Yes Group Statement */
/*H7- Having applied to Group and Detail Data */
/**/
proc SQL _method _tree;
footnote1 "Detail var (name) in select sends all names, group adds sex var to detail path";
footnote4 "summary function in select, sends obs to group path and creates a 2 var (sex & AvgAge) by 2 row data set";

select name, Sex , avg(age) as AvgAge
from MyClass as C
group by sex
having substr(name,1,1)in ("J","M") and Sex="F";

quit;
 footnote "";

/*113 **
/*S1-No variables in Select G1- NO Group Statement */
/*H8- Having applied to Summary, Group and Detail Data*/
/**/

/*114 **
/*S2-Select has: NO Detail - No Group - YES Summary G1- NO Group Statement */
/*H8- Having applied to Summary, Group and Detail Data*/
/**/

/*115 **
/*S3-Select has: NO Detail - YES Group - NO Summary G1- NO Group Statement */
/*H8- Having applied to Summary, Group and Detail Data*/
/**/

/*116 **
/*S4-Select has: NO Detail - YES Group - YES Summary G1- NO Group Statement */
/*H8- Having applied to Summary, Group and Detail Data*/
/**/

/*117 **
/*S5-Select has: YES Detail - No Group - No Summary G1- NO Group Statement */
/*H8- Having applied to Summary, Group and Detail Data*/
/**/

/*118 **
/*S6-Select has: YES Detail - No Group - YES Summary G1- NO Group Statement */
/*H8- Having applied to Summary, Group and Detail Data*/
/**/

/*119 **
/*S7-Select has: YES Detail - YES Group - No Summary G1- NO Group Statement */
/*H8- Having applied to Summary, Group and Detail Data*/
/**/

/*120 **
/*S8-Select has: YES Detail - YES Group - YES Summary G1- NO Group Statement */
/*H8- Having applied to Summary, Group and Detail Data*/
/**/

/*121 **
/*S1-No variables in Select G2- Yes Group Statement */
/*H8- Having applied to Summary, Group and Detail Data*/
/**/

/*122 **
/*S2-Select has: NO Detail - No Group - YES Summary G2- Yes Group Statement */
/*H8- Having applied to Summary, Group and Detail Data*/
/**/

/*123 **
/*S3-Select has: NO Detail - YES Group - NO Summary G2- Yes Group Statement */
/*H8- Having applied to Summary, Group and Detail Data*/
/**/

/*124 **
/*S4-Select has: NO Detail - YES Group - YES Summary G2- Yes Group Statement */
/*H8- Having applied to Summary, Group and Detail Data*/
/**/

/*125 **
/*S5-Select has: YES Detail - No Group - No Summary G2- Yes Group Statement */
/*H8- Having applied to Summary, Group and Detail Data*/
/**/

/*126 **
/*S6-Select has: YES Detail - No Group - YES Summary G2- Yes Group Statement */
/*H8- Having applied to Summary, Group and Detail Data*/
/**/

/*127 **
/*S7-Select has: YES Detail - YES Group - No Summary G2- Yes Group Statement */
/*H8- Having applied to Summary, Group and Detail Data*/
/**/

/*128 **
/*S8-Select has: YES Detail - YES Group - YES Summary G2- Yes Group Statement */
/*H8- Having applied to Summary, Group and Detail Data*/
/**/
	

Flow_show.sas
Data ShowFlow;
infile datalines truncover firstobs=2;
input @1 charVarL10 $char10. @15 charVarL20 $char20. @41 charVarL35 $char35.;
datalines;
12345678901234567890123456789012345678901234567890123456789012345678901234567890
A234567890 A6789012345678901234 A1234567890123456789012345678901234
B234567890 B6789012345678901234 B1234567890123456789012345678901234
C234567890 C6789012345678901234 C1234567890123456789012345678901234
;
run;

Proc SQL Flow=15;
select * from ShowFlow;
run;

Fuzzy_merging.sas
Proc SQL;
create table Old
(Name char(15)
,City char(6)
,BrdCert char(3)
);
insert into old
values("Dr. Sebastian"	,"Paris" , "YES")
values("Dr. O’Banion"	,"Dublin", "YES")
values("Dr. Jaramillo"	,"Madrid", "YES")
values("Dr. Mafume"		,"Tokyo" , "YES")
values("Dr. Lu"	 ,"Boston", " NO")
;
quit;

Proc SQL;
create table New like Old;
insert into New
values("Dr. Sebastian"	,"Paris" , "YES")
values("Dr. O’Banionn"	,"Dublin", "YES")
values("Dr. Jaramillo"	,"Madr d", "YES")
values("Dr. Mafumee"	,"T kyo" , "yES")
values("Dr. Lu"	 ,"Boston", " NO")
;
quit;

Proc SQL;
select ((O.name=New.name)*9
		+(O.City=New.City)*5
		+(O.BrdCert=New.BrdCert)*3) as score
		,O.name as ON , O.city as OC ,O.BrdCert as OBC
 ,N.name as NN , N.city as NC ,N.BrdCert as NBC
	from Old as O , new as N
/*	having score >= 2*/
 order by score desc;

/**
Section __: Formatting the score
***/

Proc format ;
value Mtching
	17="Name & City & Board"
	12="Name & Board"
	8="City & Board"
	9="Name"
	5="City"
	3="Board only"
	0="no Match";

Proc SQL;
select ((O.name=New.name)*9
		+(O.City=New.City)*5
		+(O.BrdCert=New.BrdCert)*3) as score format=Mtching.
		,O.name as ON , O.city as OC ,O.BrdCert as OBC
 ,N.name as NN , N.city as NC ,N.BrdCert as NBC
	from Old as O , new as N
	having score >= 2
 order by score desc;

indexes.sas
Proc SQl;
create table Class as
select *
from sashelp.class;
quit;

Proc SQL;
create index name on class(name);
quit;

Proc SQL;
create index NmAge on class(name,age);
quit;

Proc SQL;
drop index name from work.class;
quit;

proc contents data=class position;
run;

**************************************;
Proc SQL;
create table Class_2
(Name Char(8) not null /**/
 ,Sex Char(1)
 ,Age Num
 ,Height Num
 ,Weight Num
 ,Constraint sex check(sex in("M","F"))
 ,Constraint age check(age GE 0)
 ,Constraint Height check(Height GE 0)
 ,Constraint weight check(Weight GE 0)
);

insert into class_2 select * from class;
QUIT;

DATA CLASSX;
SET CLASS;
IF _n_=3 Then sex="U";
RUN;

proc SQL;
insert into class_2 select * from classX;
QUIT;

Into_and_macro_variables.sas
/**
Section __: Reduce the number of obs in the data set: the slide is crowded
***/
data MyClass;
set SAShelp.class;
if mod(_N_,7) in (0,1,2,4,6,7) ;
label Name="Student name";
run;

proc SQL;
create table eligable
(ssn num
 ,sex char(1));
insert into eligable
values(012403186,"M")
values(022503199,"F")
values(032503199,"M")
values(042503199,"M")
values(052503199,"F")
values(062503199,"F")
values(072503199,"M")
values(082503199,"F")
values(092503199,"M")
values(102503199,)
values(112503199,"M");
quit;

proc SQL;
create table eligable2
(ssn num
 ,sex char(1));
insert into eligable
values(012403186,"M")
values(022503199,"F")
values(032503199,"M")
values(042503199,"M")
values(052503199,"F")
values(062503199,"F")
values(072503199,"M")
values(082503199,"F")
values(092503199,"M")
values(102503199,"F")
values(112503199,"M");
quit;

proc SQL;
create table Attended
(ssn num
,sex Char(1));
insert into Attended
values(042503199,"M")
values(082503199,"F");
quit;

*scientific notation problem and fix;
proc SQL ;
select ssn into :SSNAttnded separated by "," from attended;
quit;
%put &SSNAttnded;

proc format ;
value $GNDR 'M'='Male' 'F'='Female';run;

options nocenter;
Proc SQL;
select Name , sex format=$GNDR.
from MyClass;
run;

proc sql;
select distinct(sex) into :sexlist separated by ' '
from MyClass;
%put &sexlist;

proc sql;
select distinct(Age) into :AgeList separated by ' '
from MyClass;
%put &AgeList;

%macro Failures;
proc sql;
/*can concatinate strings inside a distinct but Format is not applied.
 can have complex separators*/
select distinct('"'||sex||'"') format=$GNDR.
 into :sexlist separated by ' and sex NE '
from MyClass;
%put &sexlist;

%let sexlist=;
proc sql; /*syntax Error fails to run */
select distinct('"'||sex format=$GNDR.||'"') into :sexlist
 separated by ' and sex NE '
from MyClass;
%put &sexlist;
%mend Failures;

%let sexlist=;
proc sql;
title "Close to being right- put first & last quotes in the where";
select distinct(sex) format=$GNDR. into :sexlist separated by '" , "'
from MyClass;
%put &sexlist;

%let sexlist=;
proc sql;/*Fails format must be outside the distincting parenthesis*/
select distinct(sex format=$GNDR.) into :sexlist separated by '","'
from MyList;
%put &sexlist;

%mend Failures;

***Value into one variable;
%let namelist=;
proc sql noprint;
SELECT max(age) INTO :MaxAge
FROM MyClass;
quit;
%PUT &MaxAge;

***Column into one variable;
%let namelist=;
proc sql noprint;
SELECT quote(NAME) INTO :NAMELIST SEPARATED BY ","
FROM MyClass;
quit;
%PUT &NAMELIST;

***Column into Several variables;
proc sql noprint;
SELECT distinct(Sex) INTO :Gndr1-:Gndr99
FROM MyClass;
quit;
%PUT &Gndr1 &Gndr2 &Gndr3;

*******************;
*loading multiple values into multiple macros;
Proc SQL;
select 	name
 	,age
		,height
 into :namelist separated by "*"
 , :agelist separated by " "
 	, :heightlist separated by "-"
		from sashelp.class;
%put &namelist &agelist &heightlist;

****;
Proc SQL;
select name,sex, age into
	 :name1-:name99
	 ,:sex1-:sex99
 ,:age1-:age99
	 from SAShelp.class;
	 quit;
options nocenter ls=90;
Proc SQL;
select scope, name ,value
from sashelp.vmacro
where upcase(scope)="GLOBAL" and substr(name,1,1) in ("N","S","A")
order by name;run;

*cool creation of a quoted string;
proc sql noprint;
SELECT '"'||TRIM(NAME)||'"' INTO :NAMELIST SEPARATED BY ","
FROM SASHELP.cLASS;
%PUT &NAMELIST;

%let namelist=;
proc sql noprint;
SELECT quote(NAME) INTO :NAMELIST SEPARATED BY ","
FROM SASHELP.cLASS;
quit;
%PUT &NAMELIST;

%let namelist=;
proc sql noprint; /*Cooler way to add quotes*/
SELECT quote(TRIM(NAME)) INTO :NAMELIST SEPARATED BY ","
FROM SASHELP.cLASS;
quit;
%PUT &NAMELIST;

%let namelist=;
proc sql noprint; /*Cooler way to add quotes*/
SELECT distinct quote(TRIM(NAME)) INTO :NAMELIST SEPARATED BY ","
FROM SASHELP.cLASS;
quit;
%PUT &NAMELIST;

**one pass macro variables ;
proc SQl;
select count(*) as totalPats
 ,sum(sex="M") as males /*Sum and group interact to determine rows*/
 ,sum(sex="F") as females
	 ,(calculated males/ calculated TotalPats) 	as PctM
	 ,(calculated females/ calculated TotalPats) 	as PctF
	 ,sum(Height*(sex="M")) /calculated males 	as M_AV_HT
 ,sum(Height*(sex="F")) /calculated females 	as F_AV_HT
 into 	:TotPats
			,:CountM
			,:CountF
			,:PctM
			,:PctF
			,:M_av_hgt
			,:F_av_hgt
	from SAShelp.class;/*No group & sumary functoins, so one line in ouptut data set*/
;
quit;
proc print data=sashelp.vmacro;
where scope ="GLOBAL"
 AND UPCASE(NAME) IN("TOTPATS","COUNTM","COUNTF","PCTM","PCTF","M_AV_HGT","F_AV_HGT");
run;

Istalling_the_abbrevS___2013_09_04_MWSUG_abbrev_for_HOW.docx
Context Sensitive help through the SAS Windows Editor
Using Abbreviations for Easier SAS Coding

There are several articles, by SAS employees, on this little known feature in the SAS editor.
My favorite article on abbreviations can be found at the link below.
http://support.sas.com/resources/papers/proceedings09/077-2009.pdf

Have you ever forgotten the syntax for an infrequently used SAS command, or an obscure option on a Proc -- and wanted to quickly get a reminder
This abbrev file (the .KMF file that you can download from this page) will install context sensitive help, for many Procs and functions, into the SAS windows Editor.
This functionality is only available in the Windows and E.G. Editors

If you install the .KMF file from this webpage the editor will recognize - case sensitively - text strings and prompt you with a box asking if you want a reminder as to how the function or the PROC works.
Two examples are shown below.
If you see a prompt and then hit the tab or enter key, the contents of that abbreviation will be pasted into your code.

As a warning: the reminders that these abbrevs paste in to your program can be quite lengthy,
The code pasted in almost always contains code samples that you can run.
The code pasted in often contains a discussion of the command that you typed AND OTHER RELATED commands.
Above, you can see that the entry for index is going to suggest that another command be considered - as well as giving examples of index,

Since the amount of code the abbrev can paste into the editor can be over a hundred lines,
it is suggested that you open another SAS editor window (ALT-V), and then paste/call/execute the abbreviation/hint into the new window.
You can review the code in the new window and then copy just what you want back to your program.

Installing the abbrev file so your Macro Editor looks like the one above:
 Click on the link at top of page to copy the .KMF file to your machine.
 Open SAS on your machine.
 Click Keyboard Macros Macros
 Click the IMPORT button and select the .kmf file and click OPEN.
 The abbrev files will be imported and are ready to use.
 Click the red X if you want to close the box.
 You can scroll up and down to see/select an abbrev and then click run to test the installation.
 Ed and I created almost 400 abbreviations.

 As you can see below, abbrevs are generally lower case and function abbrevs look for the parenthesis: e.g. substr(

I suggest you type in DOCBLOCK and SECBLOCK (two of the handful of abbrevs that are not all lowercase) and see what you get.
The standard header, created by DOCBLOCK, is read by the HeaderParser program that you can also download from this site.

I usually let the SAS editor suggest abbrevs as I type, but you can also call an abbrev (or see what are available) by going to the menu in the SAS editor and selecting: tools, KeyboardMacros macros.
This will bring up a box showing all the abbrevs Ed Heaton and I have created. Below, you see the box that SAS displays after Alt-T M M .

You can add your own abbreviations but the abbreviations feature is limited to 400 entries (sizes of individual entries do not matter - just the number of abbreviations) and I have used almost all of them. You might have to delete an entry in order to add your own entry. I typically delete one of the advanced trigonometric or statistical functions.

image1.jpeg

image2.jpeg

image3.jpeg

image4.jpeg

Joins.sas
 Proc SQL;
select R.name, R.sex
 age, height
 from
 Left as L
 Right join
 Right as R
 on left.name =r.name
 and L.sex=R.sex;
/**
Section __: Reduce the number of obs in the data set: the slide is crowded
***/
data MyClass;
set SAShelp.class;
if mod(_N_,7) in (0,1,2,4,6,7) ;
label Name="Student name";
run;

/**
Section __: Make files for joining
***/
data left(keep=name sex age)
	right(keep=name sex height);
set MyClass;
if mod(_N_,2)=0 then output Left;
if mod(_N_,3)=0 then output Right;
run;
options nocenter;
Proc Print data=left;
title "Left";
Proc Print data=right;
title "Right";
run;
title ;

/**
Section __: Comma verison of inner join
***/
options ls=64;
Proc SQL;
select l.* ,"*", r.*
 from
 Left as L
 ,
 Right as R
 where left.name =r.name
 and L.sex=R.sex;
 quit;

 options ls=64;
Proc SQL;
select COALESCE(L.NAME,R.NAME)
	 ,COALESCE(L.SEX,R.SEX)
 ,AGE , HEIGHT
 from
 Left as L
 ,
 Right as R
 where left.name =r.name
 and L.sex=R.sex;
 quit;

 Proc SQL;
select L.NAME
	 ,R.SEX
 ,AGE , HEIGHT
 from
 Left as L
 ,
 Right as R
 where left.name =r.name
 and L.sex=R.sex;

 /**
Section __: Specify inner Join
***/
options ls=100;
Proc SQL;
select L.*, "*", R.*
 from
 Left as L
 Inner join
 Right as R
 on left.name =r.name
 and L.sex=R.sex;

 /**
Section __: Specify Left Join
***/
options ls=100;
Proc SQL;
select L.*, "*", R.*

 from
 Left as L
 Left join
 Right as R
 on left.name =r.name
 and L.sex=R.sex;

/**
Section __: Specify right Join
***/
options ls=100;
Proc SQL;
select L.*, "*", R.*

 from
 Left as L
 Right join
 Right as R
 on left.name =r.name
 and L.sex=R.sex;

 Proc SQL;
select R.name, R.sex
		,age, height
 from
 Left as L
 Right join
 Right as R
 on left.name =r.name
 and L.sex=R.sex;

 /**
Section __: Specify FULL Join
***/
Proc SQL;
select COALESCE(l.name,r.name)
		,COALESCE(l.sex,r.SEX)
		,age, height
 from
 Left as L
 FULL join
 Right as R
 on left.name =r.name
 and L.sex=R.sex;

/**
Section __: Specify CROSS Join
***/
Proc SQL;
select COALESCE(l.name,r.name)
		,COALESCE(l.sex,r.SEX)
		,age, height
 from
 Left as L
 CROSS join
 Right as R
;

Proc SQL;
select 	l.name,r.name
	 	,l.sex,r.SEX
		,age, height
 from
 Left as L
 CROSS join
 Right as R
;

/**
Section __: Union Join
***/
Proc SQL;
select *
 from
 Left as L
 union join corr
 Right as R
;

/**
Section __: Natural Join
***/
Proc SQL;
select *
 from
 Left as L
 Natural join
 Right as R
;

/**
Section __: Null vlaues in joins
			Any Null matches any null (of the same type
**/
data left_Null(keep=name sex age)
 right_Null(keep=name sex height);
set MyClass;
If mod(_N_,4)=0 then name="";
if mod(_N_,2)=0 then output Left_Null;
if mod(_N_,3)=0 then output Right_Null;

Proc Print data=Left_null;
title "Left_Null";
run;
Proc Print data=Right_null;
title "Right_Null";
run;

Proc SQL;
select L.name as LName, L.Sex as LSex, L.Age as LAge, "*"
	 ,R.name as RName, R.Sex as Rsex, R.Height as RHeight
 from
 Left_null as L
 Inner join
 Right_null as R
	on l.name=r.name;

Macro_code_to_match_slides_w_ian_examples_Training.sas
/*
 THIS TOP SECTION IS A TAKE AWAY - A MEMORY JOGGER FOR AUTOMATION TRICKS
This top section (about 300 lines) is a quick recap of most of the useful automation tricks
If you need to steal code for a project, you might steal it from this top section
Below the big white gap (lines 388 to 425) , is the code that goes with the ppt slides
*/

/***
 SECTION : ** system options useful for macros
**/

options nocenter;
options mprint mlogic symbolgen;

/***
 SECTION : ** print the datasets we will use in these examples;
**/
proc print data=sashelp.class;
title "This is the data set used by most examples";
run;

proc print data=sashelp.shoes;
title "this dat set can be used by readers to create their own reports/macros";
run;
title "";

/***
 SECTION : **Global macros - to be avoided ***** Globals last too long and can interfere with other macros;
**/
%let sex=F; /* global -- considered poor programming practice*/
proc print data=sashelp.class;
title "use the global macro to filter the data";
where sex=&sex;
run;

%let age=15;
proc print data=sashelp.class;
where sex="&sex" and age GE &age;
run;

%let WhereCls=where age= 14;
proc print data=sashelp.class;
title "the whole where clause can go in the macro - watch the ending semicolon - this is a good trick";
&WhereCls ;
run;
title "";

/***
 SECTION : Named parameters ARE LOCAL and good programming practice
 Also, this issustrates a trick to "get rid of the where clause"
 This shows how global macros can interfere with other macros
**/
%macro Positional(wherecls=);
%put _user_;
proc print data=sashelp.class;
title "A local and global macro have the same name";
&WhereCls ;
run;
%mend Positional;

%Positional(wherecls=);
%put _user_;

%Positional(wherecls=Where sex="M");
*callig this macro CHANGES THE VALUE OF THE GLOBAL MACRO VARIABLE!!!;
%put _user_;

/***
 SECTION : Example of Good programming practice - make your code easy to read
 put comments in your macro definition and macro call
 You can have several positional parameters and comment them to make it easy to read
**/
%macro Several(wherecls=Where age GT 12 /*Where age GT 12 this is a where clause without a semicolon*/
 ,obbs=(obs=10) /*(obs=10) This limits the number ob obs - blank is allowed */
);
/*This macro prints a few observations from the dataset SAShelp.class */
%put _user_;
proc print data=sashelp.class&obbs;
title "A local and global macro have the same name";
&WhereCls ;
run;
%mend Several;

%Several(wherecls= /*this is a where caluse without a semicolon*/
 ,obbs=(obs=5) /*This limits the number ob obs - blank is allowed */
);

%Several(wherecls=where sex="M" /*this is a where caluse without a semicolon*/
 ,obbs=(obs=7) /*This limits the number ob obs - blank is allowed */
);

/***
 SECTION : AUTOMATION TRICK: Runnning a report for values in a data set
 Learn this Trick! This is the current way to automate
 This creates a global macro variable - not a good idea, but very commmon
**/
proc SQL;
select distinct age into :agelist separated by " "
from sashelp.class;
quit;
%put _user_;

%macro listloop;
/*This macro loops over the ages in SAShelp.class and uses a where clause to produce a report for each age */
%local loopcntr thisage;
%let loopcntr=1;
%do %while(%scan(&agelist,&loopcntr) NE);
 %let thisage=%scan(&agelist,&loopcntr);
 proc print data=sashelp.class;
 where age=&thisage;
 run;
 %let loopcntr=%eval(&loopcntr+1);
 %end;
%mend listloop;
%listloop;

***;
** if you put the sql inside the macro, the list variable becomes local;
 Same as above, but the macr variable is local
***;
%macro listloop2(varble=
 ,CorN =c /* is the variable char or numeric*/);
);
/*This macro does the same as the macro above, but does not use global macro variables*/
%local loopcntr vallist thisval;

proc SQL;
select distinct &varble into :vallist separated by " "
from sashelp.class;
quit;
%put _user_;

%let loopcntr=1;
%do %while(%scan(&vallist,&loopcntr) NE);
 %let thisval=%scan(&vallist,&loopcntr);
 proc print data=sashelp.class;
 %if %upcase(&CorN)=C %then
 %do;
 where &varble="&thisval";
 %end;
 %else %if %upcase(&CorN)=N %then
 %do;
 where &varble=&thisval;
 %end;
 %else %do;
 put "ERROR IN MACRO CALL - check parameters"
 %end;
 run;
 %let loopcntr=%eval(&loopcntr+1);
 %end;
%mend listloop2;
%listloop2(varble=sex
 ,CorN =c /* is the variable char or numeric*/);
);
%listloop2(varble=age
 ,CorN =N /* is the variable char or numeric*/);
);

**;
** An old way to do automate a process is to use a datastep and symput and && ;
 Use a looping macro with %do i= and %end
***;
proc freq data=sashelp.class;
table age /out=valuelist(drop=count percent);
run;
proc print data=valuelist;
run;

data _null_;
set valuelist end=eof;
call symput("age"||left(put(_n_,3.0)),age); /*concatinate the ages */
if eof=1 then
 do;
 call symput("upper",_n_);
 end;
run;
%put _user_;

%macro oldloop;
/*This macro uses a loop, and several macro variables, to produce the desired output */
%local i;
%do i= 1 %to &upper;
proc print data=sashelp.class;
title "i=&i and age=&&age&i";
where age=&&age&1;
run;
%end;
%mend oldloop;
%oldloop;

/***
 SECTION : using a control file to select macros and pass them parameters
 using logic to create the control file.
 This is a powerful and advanced technique. You meed to need automation to make this useful.
**/
data contrlFile;
infile datalines missover firstobs=4;
input @1 Rtype $ @10 DSN $ @20 param1 $ @30 param2 $;
datalines;
 1 2 3 4 5 6 7 8
12345678901234567890123456789012345678901234567890123456789012345678901234567890
rtype DSN param1 Param2
show class age 15
show class sex "M"
plot class age height
run;
proc print data=contrlFile;
run;

**you use the variable Rtype to select
 a macro from your suite of pre-compiled macros--so lets write/compile some simple macros;
%macro listing(dsn=
 ,Numvar=
 ,val=
);
proc print data=sashelp.&dsn;
title 'print where &numvar=&val;';
where &numvar=&val;
run;
title "";
%mend listing;

%macro plotting(dsn=
 ,Yvar=
 ,Xvar=
);
proc plot data=sashelp.&dsn;
title 'plot &Yvar*&Xvar;';
plot &Yvar*&Xvar;
run;
title "";
%mend plotting;

**use call execute , and the control file, to "assemble" macro calls of the two macros above;
data _null_;
set contrlFile;
if rtype="show" then
call execute('%listing(dsn='||dsn||',numvar='||param1||',val='||param2||')');
else if rtype="plot" then
call execute('%plotting(dsn='||dsn||',Yvar='||param1||',Xvar='||param2||')');
run;

/***
 SECTION : using a macro to save typing when renaming lots of variables;
 this macro is used/called as a data set option
 This can be really annoying to read. Makes for a pretty complex data statement;
**/
%macro rename(varcore=
 ,prefix=
 ,UpLim=
);
%local i;
rename=(
%do i = 1 %to &uplim;
 &varcore&i=&prefix&varcore&i
%end;
)
%mend rename;

options mprint mfile nomlogic;
data testing (%rename(varcore=NRX,prefix=ave,Uplim=24));
run;

/***
 SECTION : Denormalizing data
 or getting several totals in one pass through the data set
 lets get the sum and average heights, ages and weights for males and females
 to make this more like a business problem we'll rename the variables
 prod1 prod2 prod3 - we often use this logic to create vars like Qtr1 Qtr2 Qtr3 Qtr4
**/
data raw;
infile datalines missover firstobs=5;
/*file of pharmacist sales by payor and merchansdise class*/
/*This will get the Q1 total by payor class */
/*There are other variables in the dataset so you can play with/expand the proglem*/
input @1 pharm $char3. @10 pay_type $char1.
 @15 prod_type $ @30 q1 @35 Q2 @40 Q3 @45 Q4;
datalines;
 1 2 3 4 5 6
1234567890123456789012345678901234567890123456789012345678901234567890
c=cash 3=3rd party h=HMO D=Drug E=equipment
Pharm payor Product_type q1 q2 q3 q4
bob C D 10 15 19 11
bob 3 E 23 12 24 11
bob H E 11 17 21 13
bob C D 13 16 23 15
bob 3 D 15 16 24 14
bob H D 10 17 25 17
Shu C D 13 11 27 19
Shu 3 E 16 12 29 17
Shu H E 17 17 20 14
Shu C D 12 14 21 12
Shu 3 D 14 17 22 14
Shu H D 10 16 21 14
;
run;

proc sort data=raw;
by pharm ;
run;

proc print data=raw;
run;

/*A zeroing macro and a summing macro*/
%macro Zro(prod= ,Zupper=);
 %do i=1 %to &Zupper;
 sum&prod&i=0 ;
 %end;
%mend zro;

%macro sumup(prod= , Supper=);
 %do i=1 %to &Supper;
 sum&prod&i+q&i;
 %end;
%mend sumup;

data one_line;
set raw;
by pharm;
if first.pharm then
 do;
 %zro(prod=CQ, zupper=4);%zro(prod=3Q, zupper=4);%zro(prod=HQ, zupper=4);
 end;

if Pay_type="C" then
 do;
 %sumup(prod=CQ,supper=4);
 end;
Else if Pay_type="3" then
 do;
 %sumup(prod=3Q,supper=4);
 end;
Else if Pay_type="H" then
 do;
 %sumup(prod=HQ,supper=4);
 end;

if last.pharm then output;
run;

proc print data=one_line;
title "Data after collpsing to one line - this is the same technique as transposing";
run;
title "";

****capture the code to see what happened *;
%macro What_gives;
options nosymbolgen;
data one_line;
set raw;
by pharm;
if first.pharm then
 do;
 %zro(prod=CQ, zupper=4);%zro(prod=3Q, zupper=4);%zro(prod=HQ, zupper=4);
 end;

if Pay_type="C" then
 do;
 %sumup(prod=CQ,supper=4);
 end;
Else if Pay_type="3" then
 do;
 %sumup(prod=3Q,supper=4);
 end;
Else if Pay_type="H" then
 do;
 %sumup(prod=HQ,supper=4);
 end;
if last.pharm then output;
run;

proc print data=one_line;
title "Data after collpsing to one line - this is the same technique as transposing";
run;
title "";
%mend What_gives;

options mprint mfile;
filename mprint 'c:\test\capture_What_gives.txt';
 %what_gives;

options nomfile;

***;
***;
***;
***;
/**
Macro code to accompany PPT slides: Macro_5_2005_W_Ian_examples.ppt
***/
/***
 SECTION 0: General stuff - How to Capture macro code in a file
**/
%let dset=one;
%let low=6;
%let high=12;

**First (and bad) example. this is NOT what you should do if you want to capture macro code-
the macro does not contain all the code we want to capture & so the capture file is incomplete*;

*run from line 15 to line 28 and see what you capture in capture_code.txt;
options mprint mfile;
filename mprint 'c:\temp\capture_code.txt';

data &dset;/* we will define and call the macro within the data step. */
/* routing output to a file starts and ends with the macro - we see only macro results*/
lookat=
%macro series; /* start of the macro*/
%do i= &low %to &high;
&i +
%end;
0;
%mend series; /* end of the macro*/
%series; /*Calling the macro - inside the data step*/
run;
options nomfile;

***** second example. this is what you SHOULD DO to capture macro code******;
***** Put a large block of code inside the macro - so you can see the macro results and the environment*;
options mprint mfile;
filename mprint 'c:\temp\capture_code2.txt';

%macro series; /* start of the macro is where we start capturing code*/
data &dset; /*we get this Data set name from a global macro variable*/
lookat=
%do i= &low %to &high;
&i +
%end;
0;
run;

proc print data=&dset;
run;

proc means data=&dset;
run;
%mend series; /* end of the macro is where we stop capturing code*/

%series;
options nomfile;

/***
 SECTION 1: Macros recall values for you
 %let in open code Creates a global Macro Variable
 first use
 macros are characters- always
 options
**/
proc print data=sashelp.class;
run;
****;
%let MVsex="M";
**** you can look at macro values in many ways;
%put _user_;
%put &mvsex;
****lots of other stuff in the macro symbol table;
%put _automatic_;

proc print data=sashelp.class;
where sex="&MVsex"; /*we must fix the macro - or the where*/
run;

**options for checking - only one makes sense with this simple macro use;
options mprint mlogic nosymbolgen /*nomprint nomlogic nosymbolgen */;
proc print data=sashelp.class;
where sex=&MVsex; /*we must fix the macro - or the where*/
run;

%let month=january;
%let timep=&month;
%put _user_;

%let StNames =holding1;
%let holding1=holding2;
%let holding2=NY,NJ,DE;

%PUT &StNames;
%PUT &&&&&&&StNames;

%let ooops=%str(proc print; run;);

/***
 SECTION 2:macros conditionally recall values
 The while-scan loop is becoming more common than a do loop
 LOOK AT THE LOG
 First loop
 options mprint mlogic symbolgen
 local macro variable
 persistance of macro variables
**/
%let MVSexlist= M F;
%put _user_;

%macro Prnt_sex;
options nocenter;

%macro skip;
%local MVSexList;
Proc sql;
title "Dynamically creating a macro variable";
title "";
select distinct sex into :MVSexList separated by " "
 from sashelp.class;
 quit;
%put _user_;
%mend skip;

%let sex_no=1;
%put _user_;
%do %while(%scan(&MVSexlist,&sex_no) NE) ; /* do while this condition is true*/
 %let thissex=%scan(&MVSexlist,&sex_no);
 proc print data=sashelp.class;
 title "obs from sashelp.class for sex=&thissex";
 where sex="&thissex";
 run;
 %let sex_no=%eval(&sex_no+1); /*endless loop if this is forgotten*/
%end; /*end of the loop*/
%mend Prnt_sex;

%Prnt_sex;
***options;
options nosymbolgen nomlogic mprint; /*look at the nice clean log*/
%Prnt_sex;

/***
 SECTION 3:The top of the input stack
 Looking at the Macro Symbol table
 !!!!!!LOOKING AT THE SQL TABLE DICTIONARY.MACROS!!!!!!!
**/
data year
 state;
infile datalines ;
input @1 year 4. @7 month $char3. @12 sales 3.0 @16 state $char2.;
datalines;
2000 jan 201 PA
2000 feb 202 PA
2000 mar 203 PA
2000 apr 204 PA
2000 may 205 PA
2000 jun 206 PA
2000 jul 207 PA
2000 aug 208 PA
2000 sep 209 PA
2000 oct 210 PA
2000 nov 211 PA
2000 dec 212 PA
2001 jan 211 DE
2001 feb 212 DE
2001 mar 213 DE
2001 apr 214 DE
2001 may 215 DE
2001 jun 216 DE
2001 jul 217 DE
2001 aug 218 DE
2001 sep 219 DE
2001 oct 220 DE
2001 nov 221 DE
2001 dec 222 DE
;
run;

proc print ;
run;
%let month=jan;
%put _user_;
%put _Global_;
%put _Automatic_;
%put _All_;

start of reports;
proc means data=year;
where month="&month";
run;

Proc print data=year;
where month="&month";
run;
****end of report*****;
*looking at the Macro Symbol table;
%put _user_;
%put _Global_;
%put _Automatic_;
%put _All_;

%put _user_;
*or;
proc sql;
describe table dictionary.macros;
select * from dictionary.macros
where scope="GLOBAL";
quit;

/***
 SECTION 4:Rules for puting stuff in the table
 The first semi-colon ends the command
 & and % are evaluated
**/
** the first semocolon ends the command;
%let oops=proc print; run;
%put _user_;

%let oops2=%str(proc print; run;);
%put &oops2; /* note the not about unmasking*/

%put _user_; /* note the boxes*/

%put _all_;

**& and % (have to wait for a full understanding of %) are evaluated on macro assignment;
*put an & into the macro symbol table;
options mlogic symbolgen mprint;
%let time_period=&month;
%put _User_;

show a % being evaluated as it goes into the symbol table*********************;
%let Max_of_bys=3; /*count of "real" by macros - Do not count By0 */
%let By0=%str();
 /* Must have B0 to get the overall answers - fill with spaces to length of longest By*/
%let By1=%str(By spec);
%let By2=%str(By cat);
%let By3=%str(By segment);

/*concatinate the values of the by variabels into one macro var- use this for sorting*/
%macro makelist;
 %do cntr=1 %to &Max_of_bys; %substr(&&by&cntr,4) %end;
%mend makelist;

/*below we try to put a % into the Macro Symbol Table*/
options mprint mlogic symbolgen;
%let LstOfByVars=%makelist;
%put _user_; /*where does the one space between the variables come from?*/

/***
 SECTION 5: The &&&&&&
**/
%let StNames =holding1;
%let holding1=holding2;
%let holding2=NY,NJ,DE;
%put _user_;

%put &&&StNames;

%put &&&&StNames;

**thanks to Shu Zan;
%put &&&&&&&StNames;

/***
 SECTION 6: Part 2 The macro Catalog- the storage place for Macro programs
 Rules for Macro Compilation
 What gets compiled and what gets stored as text
 The options Mlogic Mprint and Symbolgen
 %str and %upcase
**/
* a simple example - using Global Variables ;
%Macro Pprint;
title "Stuff for &State";
%if &sysday=Friday %then %do;
 proc freq data=sales;
 %str(;) /* an extra semicolon*/
 tables state/missing; run;
%end;
proc print data=sales;
 where state="&state";
 sum sales;
 run;
%Mend Pprint;

%Macro Mmean;
 proc means data= sales;
 where %upcase(state)="&state";
 run;
%Mend Mmean;

%Macro Mmean;
proc means data= sales;
 where state="&state";
 run;
%Mend Mmean;

data sales;
infile datalines;
input state $ zip $ sales Prod $;
datalines;
PA 19103 20 Gizmo
PA 19104 30 DoDad
PA 19104 20 DoDad
PA 19104 10 Gizmo
NJ 08103 20 Gizmo
NJ 08104 30 DoDad
NJ 08105 20 DoDad
NJ 08104 10 Gizmo
DE 18939 13 DoDad
DE 18922 12 Gizmo
DE 18877 17 Gizmo
DE 18877 7 Gizmo
DE 18877 27 DoDad
;

Options Mlogic Mprint Symbolgen;
%let state=PA; /*Global Variable :-(*/
%Pprint;

Options nomlogic nosymbolgen;
%let state=NJ; /*Global Variable :-(*/
%Mmean
%let state=DE; /*Global Variable :-(*/
%Pprint
%let state=PA; /*Global Variable :-(*/
%Mmean

*Good programming practice says do not use global variables******************;
** a better way to create macros is to pass the parameter so it is not global**;
%Macro Pprint2(filter_on= /* this is a value of state. It is unquoted e.g. DE*/
);
%local Filter_on;
%let Filter_on=%upcase(&Filter_on);
%put _local_;
%put _user_;
title "A Freq report for &filter_on";
%if &sysday=Friday %then %do;
 proc freq data=sales;
 %str(;) /* an extra semicolon*/
 tables state/missing; run;
%end;
proc print data=sales;
 where upcase(state)="&filter_on";
 sum sales;
 run;
%Mend Pprint2;

%Pprint2(filter_on=DE /* this is a value of state it is unquoted e.g. DE*/
);
%put _user_; /*note that the macro variable filter_on is GONE!!!!*/

****Example**this show the stuff goes to the top of the input stack*************************;
Another Example: %statements just decide if code should be put at the opt of the input stack**************;
**imagine you are looping and each loop creates some result file (called LoopResult;
**in the first loop, the master file does not exist, so you create it;
**for other loops, you use a set statement to add the new file to the bottom of the master;

/*Lets be lazy and not write real looping code. Just set the looping counter manually */

%let Nmbr_of_loop=1;
*%let Nmbr_of_loop=4;
%macro TopOTIStack;
 data MasterFile ; /*add sorting/tracking varaibles */
 set %if &Nmbr_of_loop NE 1 %then
 %do; MasterFile %end; LoopResult ;
 RUN;
%mend TopOTIStack;
options nomlogic mprint nosymbolgen;
%TopOTIStack
;

Example**shows that stuff goes to the top of the input stack, even if the macro loops;
Another Example: %statements just decide if code should be put at the top of the input stack**************;
*Another example of looping putting code at the top of the input stack;
%macro TopOTIStack2(scanlist=11 14 16);
%let scan_count=1;
%do %while(%scan(&scanlist,&scan_count) NE) ;
 %let this_age=%scan(&scanlist,&scan_count);
 options nocenter;
 proc print data=sashelp.class;
 title "class data for age=&this_age";
 where age=&this_age;
 run;
 %let scan_count=%eval(&scan_count+1);
%end;
%mend TopOTIStack2;
options nomlogic mprint nosymbolgen;
%TopOTIStack2;

ExampleTop of the Input Stack AND You don't need to execute a macro execute to test it ****;
**look a the log for these and see if it "looks right" - a visual test;
%Macro MakeYrList;
%do i=1960 %to 2001; year&i%end;
%Mend MakeYrList;

option nomlogic nosymbolgen mprint;
data all_years;
set %MakeYrList;
;
run;

 ***re-write the macro clean up the log and make resulting code easier to see;
option nomlogic nosymbolgen mprint;
%Macro MakeYrList;
data all_years;
 set %do i=1960 %to 2001; year&i %end;
;
run;
%Mend MakeYrList;
%MakeYrList;

/***
 SECTION 7: Dump the macro catalog and see what is stored as text
**/
*put a % into the macro symbol table;
%macro pprint(sex=);/*macro compile a macro */
 %let sex=%upcase(&sex);
 %if &sysday=FRIDAY
 %then %do;
 Proc print data=sashelp.class;
 where upcase(sex)="&sex";
 %str(str_&);
 %NRstr(Nrstr_&);
 %quote(Quote_&);
 %Bquote(BVQuote_&);
 %end;
run;
%mend pprint;

%macro listmac(libname=, macname=);/*do a hex dump of the Macro Catalog -look for text*/
 filename maccat catalog "&libname..sasmacr.&macname..macro";
 data _null_;
 infile maccat;
 input;
 list;
 run;
%mend;

%listmac(libname=work,macname=pprint);

%listmac(libname=work,macname=pprint);

/***
 SECTION 8: The top of the input stack
 Timing Issues in the evaluation of macro code
 The classic failure to interact with the data.
**/
options nocenter;
proc print data=sashelp.air;
title "This is the raw data";
run;

proc summary data=sashelp.air ;
output out= for_macro (where=(_type_=0)) sum(air)=SmRv;
run;

proc print data=for_macro;
run;

data _null_;
set for_macro;
if SmRv GE 0 and SmRv LE 9999 then
 %let Tvar=LOW month; ;
else if SmRv GT 9999 then
 %let Tvar=HIGH month; ;
else %let Tvar=missing; ;
run;

%put _user_;

proc print data=sashelp.air;
title "Sales Activity for this month was: &Tvar";
title2 "the title is ALWAYS WRONG";
run;

title "";

/***
 SECTION 9: part 3 done correctly - the problem is called a "timing issue"
 This is a common way to have the macro processor interact with data
 Loading a file into the Macro Symbol Table (an Array? without a number)
 Using a data step (not the top of the input stack) to create macro variables
 Creating a Macro Array
**/
data Sales;
 input dept $ name $ sales;
 cards;
bedding Watlee 18000
kitchen Cannon 15000
tv Jones 9000
carpet Keller 20000
bedding Ives 16000
bedding Parker 9000
bedding George 8000
;
run;

proc means data=sales;
 class dept;
 var sales;
 output out=stats sum=s_sal;
run;

proc print data=stats;
 var dept s_sal;
 title "Summary of Salary Information";
 title2 "For Dusty Department Store";
run;

data _null_;
 set stats;
if _n_=1 then
 call symput('s_tot',s_sal);
 else call symput('s'||dept,s_sal);
run;

/*above (creating a macro array is NOT useful
 without seeing the technique for USING a macro array*/
/*Some code useing this array will be shown below Ex 11- think of the two examples together*/
%put _user_;

/***
 SECTION 10: Symget - a simple example of getting values from the macro table
 Timing Issues
 Using a data step (not the top of the Input stack) to get values
 from the Macro Symbol Table
**/
%let a1=the first;
%let a2=the middle;
%let a3=the end;

data new;
infile datalines;
input FRMPDV $ @@;
datalines;
A1 A2 A3 A2
run;

data new;
length dest $12;
set new ;
dest=symget(FRMPDV);
run;

proc print data=new;
run;

**put on the debugger;
data new/debug;
length dest $12;
set new ;
Executable="this line";
dest=symget(FRMPDV);
run;

/***
 SECTION 11: A more practical Example of Symget - use array from example 9
**/
data new;
set sales;
pct_d= (sales / symget('s'||dept)) *100;
stop1="here";

pct_t= (sales / &s_tot) *100;
stop2="there";
run;

proc print data=new;
title "Sectoin 11 - using the array created in Secion 9";
run;

/***
 SECTION 12: A simple call execute - it put stuff on the input stack

**/
*Call execute puts stuff on the input stack;
data _null_; /*this is pretty silly, but that is what execute does*/
call execute("Proc Print data=SASHELP.class;");
call execute('title "New Title";');
call execute("run;");
run;

/***
 SECTION 13: A more practical call execute -
 Using Call Execute and a control file to automate a reporting process
 USing a control file and call execute to select macros and pass them parameters
**/
**the cool thing about what call execute does, is WHAT you can have put on the input stack..like macro calls;
**THE RAW DATA FILE - we want reports on this information*;
data NE_REGN;
infile datalines;
input state $ zip $ PERSON $ sales Prod $ commission ;
datalines;
PA 19103 Sue 20 Gizmo 1
PA 19104 Al 30 DoDad 2
PA 19104 Glenn 20 DoDad 2
PA 19104 Carlos 10 Gizmo 1
NJ 08103 Ramu 20 Gizmo 2
NJ 08104 Jim 30 DoDad 1
NJ 08105 Renzn 20 DoDad 3
NJ 08104 Donna 10 Gizmo 1
DE 18939 Eric 13 DoDad 2
DE 18922 Billy 12 Gizmo 1
DE 18877 Juan 17 Gizmo 2
DE 18877 Fan 7 Gizmo 1
DE 18877 Mike 27 DoDad 3
;
RUN;
proc print data=NE_REGN;
run;

THE CONTROL FILE - MACRO NAMES AND PARMETERS - this is our Job schedule file!!!*;
data interest;
infile datalines missover;
input @1 state $ @5 rtype $;
datalines;
PA Sales
NJ Com
;
run;
proc print data=interest;
run;

THE MACROS THAT ARE CALLED-this code defines,to SAS, the reports the customers want*;
%macro SSales(state);
proc print data=NE_regn;
title "Sales Report: Sales for &state";
var person Sales;
where state ="&state";
run;
%Mend SSales;

%macro CCom(state);
proc print data=NE_regn;
title "Commission Report: Comm. for &state";
var person commission;
*var person comm; /*Try making this the var statement and look at the error*/
where state ="&state";
run;
%Mend CComm;

*the data null below runs the scheduling file - it calls macros and passes them parameters;
**turn on the macro tracking options and run;
*Call execute puts stuff on the input stack;

options mlogic mprint symbolgen;
data _null_;
set interest;
if upcase(Rtype)="SALES" then call execute('%SSales('||state||')');
else if upcase(Rtype)="COM" then call execute('%CCom('||state||')');
run;

***;
***;
***;
***;
/***
 SECTION : Tramsposing data the J.B. Method
**/
options nocenter;
/*****Raw data ************************;
/*Raw data - each subj has three lines that we want to collapse into one*/
data One_var(sortedby=name);
infile datalines missover firstobs=4;
input @1 name $ @10 test $ @20 value;
datalines;
 1 2 3 4 5
12345678901234567890123456789012345678901234567890
each subj has three lines that we want to collapse into one
Art Weight 160
Art Height 75
Art Shoe_S 12.5
Bob Weight 150
Bob Height 67
Bob Shoe_S 9.5
Russ Weight 180
Russ Height 68
Russ Shoe_S 10.5
;
run;
proc print data=one_var;
run;

****Do the first transpose - one variable/no macros to see how it is done*******************;
data one_tr;
*each subj has three lines that we want to collapse into one;
retain wgt hgt ssz;
set One_var;
by name;
if first.name=1 then
 do;
 wgt =0;
 hgt =0;
 ssz =0;
 end;
if test="Weight" then Wgt=value;
Else if test="Height" then hgt=value;
Else if test="Shoe_S" then ssz=value;
if last.name=1 then
 do;
 output;
 end;
run;
proc print data=one_tr;
run;

*******do the second transpose - mumtiple variables with macros******************;
raw data below******************;
data Mult_Vars;
infile datalines missover firstobs=4;
input @1 name $ @10 prod $ @20 Q1 @26 Q2 @31 q3 @36 q4;
datalines;
 1 2 3 4 5
12345678901234567890123456789012345678901234567890
name product Q1 Q2 Q3 Q4
Art aspirin 60 55 50 45
Art Ben_gay 175 170 165 160
Bob aspirin 80 75 70 65
Bob Ben_gay 135 130 125 120
Russ aspirin 50 45 40 35
Russ Ben_gay 120 115 120 115
;
run;
proc print data=Mult_Vars;
run;

create the macros and Do the tranpose - data is NOT summarized*************;
%macro zero(Prod,max); /*this zeros variables */
 %do i=1 %to &max;
 &&prod._&i = 0;
 %end;
%mend zero;

%macro Transp(Prod,max); *this does the transposing - call this once for each product;
 %do i=1 %to &max;
 &&prod._&i = Q&i;
 %end;
%mend Transp;

*call the macros to do the transposing;
options mprint NOmlogic NOsymbolgen;
data wide;
set Mult_Vars;
if _N_=1 then
 do;
 %zero(asp,4);
 %zero(ben,4);
 end;
if prod="aspirin" then
 do;
 %Transp(asp,4);
 end;
Else if prod="Ben_gay" then
 do;
 %Transp(ben,4);
 end;
run;
proc print data=wide;
run;

A third transpose - put tow lines onto one - no summarizing done here**************;
%macro zero(Prod,max); /*use a loop to create the retain statements */
 %do i=1 %to &max;
 retain &&prod._&i;
 &&prod._&i = 0;
 %end;
%mend zero;

%macro Transp(Prod,max);
 %do i=1 %to &max;
 &&prod._&i = Q&i;
 %end;
%mend Transp;

options mprint NOmlogic NOsymbolgen;
data wide;
set Mult_Vars;
by name;
if _N_=1 then
 do;
 %zero(asp,4);
 %zero(ben,4);
 end;
if prod="aspirin" then
 do;
 %Transp(asp,4);
 end;
Else if prod="Ben_gay" then
 do;
 %Transp(ben,4);
 end;
if last.name=1 then
 do;
 output;
 %zero(asp,4);
 %zero(ben,4);
 end;
run;
proc print data=wide;
run;

**Example 4 ** get patient total, hospital total and market total;
data Very_Mult;
infile datalines missover firstobs=4;
input @1 name $ @10 prod $ @19 cust $ @23 Q1 @29 Q2 @34 q3 @39 q4;
datalines;
 1 2 3 4 5
12345678901234567890123456789012345678901234567890
name product Q1 Q2 Q3 Q4
Art aspirin Pat 60 55 50 45
Art aspirin hsp 70 65 60 55
Bob aspirin Pat 80 75 70 65
Bob aspirin hsp 90 85 80 75
Russ aspirin Pat 60 55 50 45
Russ aspirin hsp 50 45 40 35
;
run;
proc print data=Very_Mult;
title "Multiple lines per salesman";
run;

%macro Czero(cust,max); /* zero the counting variables*/
 %do i=1 %to &max;
/* retain &&prod._&i; */
 &&cust._&i = 0;
 %end;
%mend Czero;

%macro CTransp(cust,max); /*this is a summarization*/
 %do i=1 %to &max;
 &&cust._&i + Q&i; /* automatic retain*/
 %end;
%mend CTransp;

options mprint NOmlogic NOsymbolgen;
data Vry_wide;
set Very_Mult;
by name;
if _N_=1 then
 do;
 %Czero(hsp,4);
 %Czero(pat,4);
 %czero(mkt,4);
 end;

%CTransp(mkt,4);

if cust="hsp" then
 do;
 %CTransp(hsp,4);
 end;
Else if cust="Pat" then
 do;
 %CTransp(pat,4);
 end;
if last.name=1 then
 do;
 output;
 %Czero(hsp,4);
 %Czero(pat,4);
 %Czero(mkt,4);
 end;
run;
proc print data=Vry_wide;
run;

****Example 5 capturing the macro code and different comments ***********************;
%macro make_file;
options mprint nomlogic nosymbolgen;
data Vry_wide;
set Very_Mult;
by name;
if _N_=1 then
 do;
 /*Comment type 1 The macro processor puts code on the top of the input stack */
 %Czero(hsp,4);
 %Czero(pat,4);
 %czero(mkt,4);
 end;
 *%comment type 2 The macro processor puts code on the top of the input stack ;
%CTransp(mkt,4);

if cust="hsp" then
 do;
 %*comment type 3 The macro processor puts code on the top of the input stack;
 %CTransp(hsp,4);
 end;
Else if cust="Pat" then
 do;
 *% comment 4 The macro processor puts code on the top of the input stack;
 %CTransp(pat,4);
 end;
if last.name=1 then
 do;
 output;
 *% comment 5 The macro processor puts code on the top of the input stack;
 %Czero(hsp,4);
 %Czero(pat,4);
 %Czero(mkt,4);
 end;
run;

%mend make_file;

filename mprint "c:\temp\capture";
options mprint mfile;
%make_file;
options mprint nomfile;

***;
***;
***;
***;
/***
 SECTION MW1: Many ways to loop - this is a review of common macro automation techniques
**/
%macro skip;
Understanding these macro calls is the goal of the macro cartoon
The business issue is: I am looking for datasets in SASHELP that I can use for examples
 in some new cartoons I am creating
These sections print 10 obs from ALL the data sets in SASHLEP that are of type=DATA;
%mend skip;

/***
Program: what SAS data
By: rml

Purpose: in an automated manner, Print 10 obs form all the datafiels in SAShelp.
 To investigate the files in SAShelp for use in teaching stuff
 and to illustrate some of the different ways to automate a process
Infiles:

Outfiles: xxxxxxxxxxxxxxxx
Started: XXXXXXXXXXXXXXXXXX
Finished: XXXXXXXXXXXXXXXXXX
Usage: XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

Mod. Info: XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

***/
/***
 SECTION MWL1: Look at the SAS dictionary tables - what is their structure
***/
proc sql;
title "I can see vtable in the sas explorer, what is the name of the file in dictionary";
title2 "the common thinking is that sashelp tables run slower than dicionary tables";
describe view sashelp.vtable;
quit;

proc sql;
describe table dictionary.tables;
quit;

/*proc sql;*/
/*select memname into :file_list separated by " "*/
/* from dictionary.tables*/
/* where memtype="DATA" and libname="SASHELP";*/
/*quit; */
/*%put _user_;*/

/***
 SECTION MWL2: Looping done the OLD way:
 using data _null_ and symput to create a macro array.
 Note the use of &&dsn_&i
***/
data _null_;
set sashelp.vtable;
where memtype="DATA" and libname="SASHELP";
count+1;
call symput("dsn_"||left(put(count,3.0)),memname);
call symput("No_of_files",count); /*happens on every line- we just want the last one*/
 /*Often people use an "If end of file " to control this*/
run;
%put _user_;

%macro oldway;
%do i=1 %to &No_of_files;
 proc print data=sashelp.&&dsn_&i(obs=10);
 title "proc print data=sashelp.&&dsn_&i(obs=10);";
 run;
%end;
%mend oldway;

%oldway;

/***
 SECTION MWL3: Newer way
 SQL puts multiple values into ONE macro and upper limit of loop = &SQLOBS
 use do loop to control the scanning
***/
%macro Chk_files;
options nocenter;
proc sql noprint;
select memname into :file_list separated by " "
 from dictionary.tables
 where memtype="DATA" and libname="SASHELP";
quit;
%let SQLOBS=&SQLOBS; /*this is an automatic macro variable*/
%put _user_;

%do i=1 %to &SQLOBS /*also %while=(%scan(&file_list,&file_no) NE)) ; */;
 %let thisfile=%scan(&file_list,&i);
 proc print data=sashelp.&thisfile(obs=10);
 title "10 obs from sashelp.&thisfile";
run;
%end; /*end of the loop*/
%mend Chk_files;

%Chk_files;

/***
 SECTION MWL4: Very Common Now
 SQL and scan the macro variable until scan returns a blank
***/
%macro Chk_files;
options nocenter;
proc sql noprint;
select memname into :file_list separated by " "
 from dictionary.tables
 where memtype="DATA" and libname="SASHELP";
quit;
%put _user_;

%let file_no=1;
%do %while(%scan(&file_list,&file_no) NE) ;
 %let thisfile=%scan(&file_list,&file_no);
 proc print data=sashelp.&thisfile(obs=10);
 title "10 obs from sashelp.&thisfile";
 run;
 %let file_no=%eval(&file_no+1); /*endless loop if this is forgotten*/
%end; /*end of the loop*/
%mend Chk_files;

%Chk_files;

/***
 SECTION MWL5: Using the SQL and creating individual macro varaibles
 Using SQL to create a Macro Array
***/

%macro Semioldway;
proc sql noprint;
select distinct memname into :infile1-:infile999
 from dictionary.tables
 where memtype="DATA" and libname="SASHELP";
quit;

%let Countoffiles=&SQLobs;
%Put _user_;

%do i=1 %to &Countoffiles;
 proc print data=sashelp.&&infile&i(obs=10);
 title "proc print data=sashelp.&&infile&i(obs=10);";
 run;
%end;
%mend Semioldway;

%Semioldway;
%put _user_;

/***
 SECTION MWL6 : Using the SQL and creating individual macro varaibles
 Using SQL to create multiple Macro Arrays
 the trick is the : before the variable names
***/
proc print data=sashelp.class;
run;

%macro MultArry;
proc sql noprint;
select distinct sex
 ,age
 into :sex1-:sex999
 ,:age1-:age999
 from sashelp.class
quit;

%let CountOfCombos=&SQLobs;
%Put _user_;

%do i=1 %to &CountOfCombos;
 proc print data=sashelp.Class;
 title "kids of Sex=&&sex&i and age =&&age&i";
 where sex="&&sex&i" and age=&&age&i;
 run;
%end;
%mend MultArry;

%MultArry;

/***
 SECTION MWL7: Use SQL to create a control file - a list of macro parameters
 and then use call execute to automate a job
 THE SQL MACRO TABLE
***/
options nocenter;
proc sql noprint; /*This is a list of files -and will be a list of macro parameters */
create table file_list as
select memname
 from dictionary.tables
 where memtype="DATA" and libname="SASHELP";
quit;

%macro printMe(DSN=);/*dsn is a data set name,& we have a list of data sets in file_list*/
proc print data=sashelp.&dsn(obs=10);
title "10 obs using: proc print data=sashelp.&dsn(obs=10);";
run;
%mend PrintMe;

data _null_;
set file_list;
call execute('%PrintMe(DSN='||memname||')');
*call executes calls the macro and passes it parameters from the control file;
run;

/***
 SECTION MWL8: In the old days, folks used SQL less often. Here we use FREQ.
 Use FREQ, symput and looping to automate a report
 We want to print a report for each age (and don't want to use a by)
***/
options nocenter;
proc print data=sashelp.class;
title "Look at the data";
run;

********** Use Proc FreqGet a file of ages - ;
proc freq data=sashelp.class;
tables age/ out=ages list;
run;

proc print data=ages;
title "the age file";
run;
******SECTION: Create the macro vars - an array of macro variables;
data _null_;
set ages END=END;
call symput("age"||left(put(_n_,2.0)),left(put(age,2.0)));
 if END=1 then call symput("Numages",left(put(_n_,2.))); /*Only run once*/
run;

A small digression here ****** look at the values of the macros ****;
%put _user_;
*or;
proc sql;
describe table dictionary.macros;
select * from dictionary.macros
where scope="GLOBAL";
quit;

%macro skip;
*This fails - the word dictionary is too long for a libname - must use SASHELP. in procs;
proc print data=dictionary.macros;
where scope="GLOBAL";
quit;
%mend skip;

*or;
proc print data=sashelp.Vmacro;
where scope="GLOBAL";
quit;

*** SECTION: use the macros in a loop;
%macro printing;
%do i=1 %to &Numages;
 options nocenter;
 proc print data=sashelp.class;
 title "the macro variable i has vlaue &i and age is &&age&1";
 where age= &&age&i;
 run;
%end;
%mend printing;

%printing;

***;
***;
***;
***;

 SECTION : Ian Whitlock's Complex Examples

/***
 SECTION IWCE 1: Details of complex looping
**/

/**
Program: Macro_Loop_examples.sas
Programmed by: Russ Lavery
Thanks to: Ian Whitlock
Date: May 3, 2005
Purpose: Produces reports (proc prints)
 for each level of a variable
This is the code for a macro example for animation
****************************/
****"utility" macro definitions these take apart a two part SAS data set name*****;
%MACRO _libpart (data= ,debug=0);
/*MODULE LIbpart
PURPOSE Creates a macro variable holding library portion of a data set name
 this handles the user library
USAGE %let libname=%Mlibpart(&data);
Details Searches &data for presence of a "." when none found, creates a global variable libpart containing either "work" or "user" depending on the value of system option USER. When "." is found, returns the libname portion of the data set name.
*/
%global libpart;
%IF %INDEX(&data,.)=0
 %THEN %DO;
 %IF %QSYSFUNC(GETOPTION(USER))=
 %THEN %let libpart=WORK;
 %ELSE %let libpart=USER;
 %END;
%ELSE %let libpart=%upcase(%SCAN(&data,1,.));
%if &debug NE 0 %then %put libpart=&libpart;
%MEND _libpart;
*%_libpart(data=sashelp.class)
;

%macro _mempart(data= ,debug=0);
/*MODULE _mempart
PURPOSE Creates a macro variable holding member portion of a SAS data set name
USAGE %let libname=%Mlibpart(&data);
Details Searches &data for presence of a "." When none found,
 loads "the original value; into a macro variable called mempart
 otherwise loads the portion following the period
*/
%global mempart;
%local debug;
%if %index(&data,.)=0
 %then %let mempart=&data;
 %Else %let mempart=%upcase(%scan(&data,2,.));
 %if &debug NE 0 %then %put mempart=&mempart;

%mend _mempart;
*%_mempart(data=sashelp.class)
*%put _user_;

/***
%let dsn=sashelp.class;
%let var=sex;
%let debug=1;
***/

option mlogic mprint symbolgen;

%macro Quick_rpt(DSN=sashelp.class /* the data set to use*/
 ,Var=sex/*produce reports for each level of this var*/
 ,debug=0);
%let DSN=%upcase(&dsn); /*fix odd capitalization*/
%let var=%upcase(&Var);

*Leave system options as we saw them -I will change centering how is centering set;
PROC SQL NOPRINT;
 SELECT setting into :tidy_up
 FROM DICTIONARY.OPTIONS
 /*FYI slower way: from sashelp.voption; remember that voption is a view*/
 where OPTNAME="CENTER" ;
 %put tidy_up has the value of &tidy_up before the quit in the first SQL;
QUIT;
/*FYI Best way: forget the SQL, just use: %let tidy_up=sysfunc(getoptions(center));*/

*Change system options to what I want;
options nocenter;
*parse the dsn to create libpart and mempart macro vars;
%put _user_;
*options mlogic mprint symbolgen;
%_libpart (data=&dsn, debug=&debug);
%_mempart (data=&dsn, debug=&debug);

*We create a file with the levels of the var and levels of the var;
*used for where clause and to control looping;
proc freq data=&dsn NOPRINT;
 tables &var /out=_M_DS_1(drop=count percent);
 run;

*options mlogic mprint symbolgen;
data _null_; /*figure if the var is numeric or char */
 /*using vcolumn is not a good technique vcolumn is a view */
set sashelp.vcolumn
 (where=(libname="&libpart" and upcase(memname)="&mempart"
 and upcase(name)="&var"));
 call symput("C_or_N",left(upcase(type)));
run;
%put _user_;

data _null_; *create macro vars for each level and looping control variable;
 set _M_DS_1 end=eof;
 %IF &C_or_N =NUM %THEN %DO;
 call symput("Lvl_"||Left(put(_N_,3.0)),LEFT(PUT(&var,2.)));
 %END;
 %ELSE call symput("Lvl_"||Left(put(_N_,3.0)),LEFT(&var));
 ;
 if eof=1 then call symput("LvlsOfVar",left(put(_N_,2.0)));
 run;

/*** or you can do the same as above in one sql command and a % let - see below
Proc sql;
select distinct &var into :LvL_1-:lvl999
 from &DSN
 group by &var;
quit;
%let LvlsOfVar=&sqlobs;
run;
%put _user_;
******/

/** in keeping with the compare and contrast theme - this works as well
Proc sql noprint;
select upcase(type) into :C_or_N
from dictionary.columns
where libname="&libpart" and upcase(memname)="&mempart"
 and upcase(name)="&var" ;
%put &C_or_N=%upcase(&C_or_N);
quit;
**/

%put before the loop;
%put _user_;

*loop to print for every level of the var of interest ;
%do i=1 %to &LvlsOfVar;
 *- where clause differes for N and C;
 *chars in wheres must be quoted- numerics must NOT be quoted;
 %if &C_or_N=CHAR %then %do;
 %let QtNotQt="&&Lvl_&i";
 %end;
 %else %if &C_or_N=NUM %then %do;
 %let QtNotQt=%left(&&Lvl_&i);
 %end;

 %put above the proc print i=&i;
 proc print data=&dsn;
 where &var=&QtNotQt;
 %put inside the loop, before the run i= &i;
 run;
 %put inside the loop, After the run i= &i;
%end;
%put Just before Quick_rpt shuts down,i= &i;

options &tidy_up;

%mend Quick_rpt;

*options nomprint nomlogic nosymbolgen;
options mprint mlogic symbolgen;

%Quick_rpt(DSN=%str(sashelp.class) /* the data set to use*/
 ,Var=age /*produce reports for each level of this var*/
);

%Quick_rpt(DSN=%str(sashelp.class) /* the data set to use*/
 ,Var=sex /*produce reports for each level of this var*/
);

/***
 SECTION IWCE 2: The step boundary issue and how it sometimes screws up macros
 system commands execute immediately
 Timing
**/
%macro Printplus(data=);

 title1 "My BIG Print";
 Proc Print data=&data;
 format _all_;
 %NextStep()

%mend printplus;

%macro
nextstep();
 title1 "Analysis Vars";
 Proc means data=&data;
 run;
%mend nextstep;

%printplus(data=sashelp.class)
;
/***
 SECTION IWCE 3: symput timing problem - when does symput actually execute
**/

data W;
do obs=1 to 10 ;
 if obs <=5 then
 call symput ("x" ,"5") ;
 else
 call symput ("x" ,"0") ;

 y=&x;
 output;
 end;
run;

/***
 SECTION IWCE 4: Unmasking and the command stack in the Macro Processor
**/
%let temp=c:\temp;
/***************** these fail,
 but they seemed like a good idea at the time;-9

 filename InTemp "&temp\ex3.txt";

 filename InTemp '&temp\ex3.txt';

 filename InTemp %str(%')&temp\ex3.txt%str(%');
**********************/
filename
 InTemp %unquote(%str(%')&temp\ex3.txt%str(%'));

Map_of_the_SAS_Macro_facility_is01.pdf

Paper IS01
An Animated Guide: The Map of the SAS® Macro Facility

By Russell Lavery
Thanks to Ian Whitlock, Saad Anbari and Musa Nsereko

SYMGET/RESOLVE

CALL SYMPUT

%INCLUDE

CALL EXECUTE

W T
o o
r k
d e
 n
S
c R
a o
n u
n t
e e
r r

ASSIGN

WORD
QUEUE

MACRO TABLES

EXECUTE
(SAS EXECUTION)

DATA SET COMPILER
(SAS COMPILATION)

INPUT STACK MACRO CATALOG

Compile

Assign

Execute

Resolve

DATA VECTOR

INPUT BUFFER

MULTI COMPONENT
MACRO PROCESSOR

(Scanner, Tokenizer,
Stack)

Figure 1

ABSTRACT
As all SAS ® programmers should understand the Program Data Vector, SAS macro programmers should understand
the Map of the Macro Facility. The map is a powerful conceptual tool for understanding the macro process.

INTRODUCTION
This paper will present material from a presentation titled "An Animated Guide: The Map of the SAS Macro Facility". Two of the main
deliverables of the presentation were the animation of the macro process and the ability of the PowerPoint slides to show the many
conditions prevailing in the system. Showing many conditions at once allows the viewer to check his/her understanding of the process.
Animation, while tedious to create, allows a presenter to show details of the processing. It is the opinion of the authors that macros
have been difficult to understand because of use of the static teaching methodologies. The paper will cover the Map of the SAS system
(not just the Macro Facility) and how it can be used as a mental framework for SAS macro processing. The map presented here is an
integration of maps found in several books and I wish to acknowledge intellectual debt to the authors of the materials cited at the end of
the paper.

OVERVIEW OF THE MAP
Figure 1 shows a simplified map of the SAS system, not just the Macro Facility. It is impossible to discuss the SAS Macro Facility
without placing it in context of the SAS system. The control program for the SAS system is sometimes called the SAS Supervisor and
the description of SAS processing in this paper is a description of the functioning of the SAS Supervisor.

REVIEW OF THE NON-MACRO COMPONENTS OF THE MAP & PROCESSING NON-MACRO SAS CODE
Each box in Figure 1 is a subroutine, a component, of the SAS Supervisor or the Macro Facility and serves a different
purpose. An overview of the functions of each of the boxes follows.

The data set is a typical SAS data set and can be millions of lines long.

If the data source is a text file, the data will flow from the text file into the Input Buffer and then to the Program Data Vector (PDV). The
Input buffer holds one line of unparsed data from an input text file in preparation for passing it to the PDV. It is not used in this
presentation, but is included on the map for completeness. The PDV is a critical concept for SAS programmers. It can be thought of as
a one-row spreadsheet. Data is read into the PDV from the input Buffer or SAS data set. Calculations are performed in the PDV and,
when a data step has finished processing an observation, the values in the PDV are written to the output file.

The Input Stack is not a well known part of the SAS system. When you submit code, your code does not go directly to be
compiled. It goes to a holding area called the Input Stack. The SAS Compiler can not use your code without pre-processing and the
Input Stack holds code until it can be processed.

The Word Scanner/Token Router has two functions: 1) It takes characters off the Input Stack and assembles the characters
into tokens (groups of characters that the compiler can process). 2) It also decides if the token should go to the Word Queue or to the
"Multi-Component-Macro Processor. The Word Queue holds six tokens and allows the SAS supervisor to access "previously
assembled" tokens to build context for a token currently being assembled by the Word Scanner.

Characters flow from the Input Stack to the Word Scanner. Characters are assembled in the Word Scanner into tokens. The tokens
then flow through the system (either from the Word Scanner to the Word Queue or from the Word Scanner to the Macro Processor).
The SAS Compiler is the boss of the system. It requests tokens from the Word Scanner until it is passed a token that indicates a step
boundary (e.g. run, quit, proc).

When the SAS Compiler receives a step boundary token, it takes total control of the system and attempts to compile your code. No
tokens are assembled, or move, while the SAS Compiler is in control. If the code is correct (matching quotes, spelling, semicolons etc.),
it will be compiled and the compiled code is passed to SAS Execute module.

The SAS Execute module then takes total control of the process. The SAS Compiler, and other parts of the map, become inactive. If
the job has no run errors (e.g. data mismatch etc) it will run. No tokens move while the SAS Execute module is in total control.

SAS TOKENS
The conversion of text to SAS tokens is an important, and basic, part of the SAS system. There are many kinds of tokens but we will
only discuss the four most common. They are:
Character Tokens: Strings of characters in single/double quotes. (note that SAS handles single quoted character strings different from
double quoted character strings)
Numeric Tokens: A string of digits, decimals (dates & times)
Name Tokens: The words that SAS recognizes (e.g. proc, var1, _n_)
Special Tokens: Characters other than letters/numbers (eg. / + = ;)

The Word Scanner, as it takes characters off the Input Stack and tries to assemble them into tokens, checks for a couple of things. First
it checks every character it pulls off the Input Stack to see if the token currently being assembled has ended. The end of a token is
either a blank space, a period or the start of another token (e.g. + or ;). It also checks for two characters called "Macro Triggers". These
characters (the & followed by a letter or underscore or the % followed by a letter or underscore) are signals that (for a while) following
text should be routed to the Macro Processor and not to the Word Queue.

REVIEW OF THE MACRO COMPONENTS OF THE MAP & PROCESSING MACRO SAS CODE
The SAS Macro Facility is often described as a "text processing system". That means that the Macro Processor stores text in either of
two locations and you can command SAS to recall the text from these locations to the Input Stack. The two locations are the Macro
Symbol Table (or Macro Table) and the Macro Catalogue. Moving text back and forth between the storage areas and the Input Stack is
the function of the Macro Processor. By using statements like %if you can control whether a certain section of code gets recalled and
moved to the Input Stack. Using %do allows you to control how many times a section of code is recalled from macro storage areas and
moved to the Input Stack.

THE MAIN CONFUSION
One of the main sources of confusion in most macro documentation is the inappropriate re-use of the words compile and execute. SAS
performs at least three “compiles” and three “executes” in a complicated macro program. These three compiles and executes have very
different rules, do very different things and fail in very different ways. You get errors when rules are violated and when tasks can not be
performed. Calling these different processes by the same names makes the overall process harder to understand.

We will create names to differentiate between the processes. As Figure 1 shows, this paper will give the different compiles and
executes different names. The names are: SAS Compile, SAS Execute, Macro Compile, Macro Execute, Assign and Resolve.

We all have experience with SAS Compile and SAS Execute. They are the modules that process regular SAS code. The other
compiles and executes are associated with loading code into, and removing code from, the two macro storage areas. The two macro
storage areas, the Macro Symbol Table and the Macro Catalog, perform different functions.

MACRO SYMBOL TABLE
The Macro Table (or Macro Symbol Table or Symbol Table) is used to store strings that you want to recall later in your code. It
generally does not have the ability to conditionally process code and it can be thought of as something like the clipboard in Windows®
products. This paper calls putting values into the Macro Table "assigning a macro value". Most basically, the text strings are assigned
(put into the Macro Table) with commands like:

%let comp= The Acme Storage Company ;
or
%let year= 1988 ;

These commands are typed into your the body of your SAS code and when they reach the top of the Input Stack the Word Scanner
examines them and passes them to the Macro Processor as is shown in Figure 2. The %let statement takes the text you place
vbetween the equal sign and the first semicolon and puts the text into a named storage area (here, the name is month) in the Macro
Table.

%put Variablename is a macro language statement that writes the values of a macro variable to the log.
The command %put _user_ will write the names and values of user defined macro values to the log.

SYMGET/RESOLVE

CALL SYMPUT

%INCLUDE

CALL EXECUTE

W T
o o
r k
d e
 n
S
c R
a o
n u
n t
e e
r r

WORD
QUEUE EXECUTE

(SAS EXECUTION)
DATA SET

INPUT STACK

%let month=jan;
start of reports;
proc

means data=year;
where month=“&month”;
run;

Proc

print data=year;
where month=“&month”;
run;
****end of report*****;

MACRO CATALOG

Compile

Execute

Resolve

DATA VECTOR

INPUT BUFFER

MULTI COMPONENT
MACRO PROCESSOR

(Scanner, Tokenizer,
Stack)

Assign

%let
Mont h=J an;

COMPILER
(SAS COMPILATION)

MACRO TABLES

Sysday=Thursday

GLOBAL:month=jan

Figure 2

Below we use %put _user_ to examine the contents of the
macro variables we created above.

%put _user_;
GLOBAL COMP The Acme Storage Company
GLOBAL YEAR 1988

%let will automatically trim blanks between the equal sign and the
first character in your text string. Note that the semicolons that
were at the end of the statements (e.g. %let year= 1988;) were not
stored in the Macro Table. The semicolon was part of (it was the
end of) the %let instruction and was "consumed" by the Macro
Processor. Values are usually recalled from the Macro Table by
putting &varname (ampersand followed by the variable name) in
your code. Values are recalled from the Macro Table and replace
the original text on the Input Stack. A pictorial example of this
process is given in Figure 3 and Figure 4.

%let will automatically trim blanks between the equal sign and the first character in your text string. Note that the semicolons that were
at the end of the statements (e.g. %let year= 1988;) were not stored in the Macro Table. The semicolon was part of (it was the end of)
the %let instruction and was "consumed" by the Macro Processor. Values are usually recalled from the Macro Table by putting
&varname (ampersand followed by the variable name) in your code. Values are recalled from the Macro Table and replace the original
text on the Input Stack. A pictorial example of this process is given in Figure 3 and Figure 4.

=
Year
;

where
 month
=

SYMGET/RESOLVE

CALL SYMPUT

%INCLUDE

CALL EXECUTE

W T
o o
r k
d e
 n
S
c R
a o
n u
n t
e e
r r

WORD
QUEUE EXECUTE

(SAS EXECUTION)
DATA SET COMPILER

(SAS COMPILATION)

***start of
reports***;
proc means
data

INPUT STACK
”;
run;

Proc print data=year;
where month=“&month”;
run;
****end of report*****;

MACRO CATALOG

Compile

Assign

Execute

DATA VECTOR

INPUT BUFFER

Resolve

MULTI COMPONENT
MACRO PROCESSOR

(Scanner, Tokenizer,
Stack)

MACRO TABLES
Sysday=Thursday

GLOBAL:month=jan

“

jan

& month

=
Year
;

where
month
=

SYMGET/RESOLVE

CALL SYMPUT

%INCLUDE

CALL EXECUTE

W T
o o
r k
d e
 n
S
c R
a o
n u
n t
e e
r r

WORD
QUEUE EXECUTE

(SAS EXECUTION)
DATA SET COMPILER

(SAS COMPILATION)

***start of
reports ***;
proc

means
data

INPUT STACK

jan”;
run;

Proc

print data=year;
where month=“&month”;
run;
****end of report*****;

MACRO CATALOG

Compile

Assign

Execute

DATA VECTOR

INPUT BUFFER

Resolve

MULTI COMPONENT
MACRO PROCESSOR

(Scanner, Tokenizer,
Stack)

MACRO TABLES

Sysday=Thursday

GLOBAL:month=jan

“

jan

Figure 3 Figure 4

Some actions are taken when code is moved into and out of the Macro Table. The Macro Processor attempts to evaluate macro
references/invocations as they are assigned. A reference is an attempt to resolve a macro variable (done with a &varname). A macro
invocation is an attempt to execute a macro program (done with a %macroname). An example of this evaluation action, when assigning
a macro, is illustrated below left where we issue a %let that contains an &.

/*use %put show values in the Macro Table*/
%put _user_;
 GLOBAL COMP The Acme Storage Company
 GLOBAL YEAR 1988

/*issue % let command with the & in it*/
%let fyr=fiscal_&year;

/*use %put to show values in Macro Table*/
%put _user_;
 GLOBAL FYR fiscal_1988
%put &fyr;

 fiscal_1988

Note that the Macro Processor did not store GLOBAL FYR
fiscal_&year in the Macro Table. It checked the Macro Table for a
variable with a name of year and evaluated &year to 1988 before
storing the text in the Macro Table. If you want to store the string
&year in the table you must tell SAS that &year is not a macro
trigger by “Macro Quoting” it.

If you were to get the string fiscal_&year stored in the global
macro variable FYR in the Macro Table, it would be evaluated
when it is recalled and reaches the top of the input stack. There
are ways to block evaluation, on assignment and on resolution,
but they involve macro quoting. Quoting is addressed in parts two
and three of this series of presentations.

MACRO CATALOG
The Macro Catalog is where SAS stores macro definitions. A macro definition is any code between a %macro Macroname; and a
%mend;. Macro definitions can be simple or complex. Complex macro definitions use macro statements like %if, %do and %end to
execute conditionally. We call putting text into the Macro Catalog “ Macro Compilation and this is illustrated in Figures 5 and 6.
Macro definitions compile macros and put code into the Macro Catalog. Figure 6 summarizes some of the rules for "Macro
Compilation".

SYMGET/RESOLVE

CALL SYMPUT

%INCLUDE

CALL EXECUTE

W T
o o
r k
d e
 n
S
c R
a o
n u
n t
e e
r r

INPUT STACK
%Macro Pprint;
title ”Stuff for &State";
%if &sysday=Friday %then
%do;
proc freqdata=sales;

t ables st a t e /m issing ; run ;
%end;
proc

print data=sales;

where state="&state";

sum sales;

run;
%Mend Pprint;
%Macro Mmean;
proc

means data= sales;

where state="&state";

run;
%Mend Mmean;

ASSIGN

WORD
QUEUE

MACRO TABLES

%Let

EXECUTE
(SAS EXECUTION)

DATA SET COMPILER
(SAS COMPILATION)

MACRO CATALOG

%Macro Mac r onam e
.

 lines of code

%Mend

Compile

Assign

Execute

Resolve

DATA VECTOR

INPUT BUFFER

MULTI COMPONENT
MACRO PROCESSOR

(Scanner, Tokenizer,
Stack)

SYMGET/RESOLVE

CALL SYMPUT

%INCLUDE

CALL EXECUTE

MACRO TABLES

Sysday=Thursday

GLOBAL:month=jan

W T
o o
r k
d e
 n
S
c R
a o
n u
n t
e e
r r

ASSIGN

WORD
QUEUE EXECUTE

(SAS EXECUTION)
DATA SET COMPILER

(SAS COMPILATION)

INPUT STACK
%Macro Mmean;
proc

means data= sales;

where state="&state";

run;
%Mend Mmean;

data sales;
infile datalines;
input state $ zip $ sales
Prod $;
datalines;
PA 19103 20 Gizm o
PA 19104 30

DoDad
PA 19104 20

DoDad
PA 19104 10 Gizm o
MORE CODE NOT SHOWN

Compile

Assign

Execute

Resolve

DATA VECTOR

INPUT BUFFER

MULTI COMPONENT
MACRO PROCESSOR

(Scanner, Tokenizer,
Stack)

MACRO CATALOG

%Macro Pprint;
title ”Stuff for &State";
%if &sysday = Friday %then
%do;
 proc freq

data=sales;
 tables state/missing; run;
%end;
proc

print data=sales;

where state="&state";

sum sales;

run;
%Mend Pprint;

This

“Macro Compile”
checks for

m at c hi ng o f
logical

commands

%if %then

%do %end

BUT not for the
existence of the
logic al operat or

(= < > etc.)

Figure 5 Figure 6

The Macro Compile process (moving code into the Macro Catalog) does not evaluate macro invocations (&state and/or a macro call) in
the macro definition. Those macro references/invocations move, as text, from the Input Stack into the Macro Catalog. Figure 6 shows
that the macro reference, &state, is stored in the catalog as &state. It will be resolved when &state is removed from the Macro Catalog
and placed on the Input Stack.

The macro statements %if, %then, %do and %end are stored in the catalog in a “partially compiled” format. When the Macro Processor
takes code from the catalog and puts it on the Input Stack, it never puts the %statements on the Input Stack! They are used by the
Macro Processor to determine if other text in the macro definition should be moved to the Input Stack - as can be seen in Figure 7.
Macro commands (%if, %then etc.) are instructions to the Macro Processor and are "consumed" by the Macro Processor as the other
text in the macro definition is moved to the Input Stack.

Figure 7 shows the result of invoking the macro Pprint on a Thursday. %Pprint had reached the top of the Input Stack and had been
passed to the Macro Processor. The Macro Processor started Macro Executing Pprint and, inside the Macro Processor, evaluated the
%if to determine if the “proc freq” code should be moved onto the Input Stack. Since the logical condition %if Sysday=Friday was false,
the code between the %do and the %end was not moved to the Input Stack.

Note that the code that was moved contains the string&state. It is worth noting where &state is evaluated. It gets put on the Input Stack
and substitution (of PA for &state) occurs when &state reaches the top of the Input Stack and the &s and triggers the Macro Processor.

&year is resolved as
it goes into storage

SYMGET/RESOLVE

CALL SYMPUT

%INCLUDE

CALL EXECUTE

W T
o o
r k
d e
 n
S
c R
a o
n u
n t
e e
r r

WORD
QUEUE EXECUTE

(SAS EXECUTION)
DATA SET
PA 19103 20 Gizmo
OBS NOT SHOWN
DE 18877 27

DoDad

COMPILER
(SAS COMPILATION)

INPUT STACK

proc print dat a=s ales ;
w her e state="&state";
sum sales;
run;
;
%let state=NJ;
%Mmean
%let state=DE;
%Pprint
%let state=PA;
%Mmean

Assign
Execute

Resolve

DATA VECTOR

INPUT BUFFER

CompileMULTI COMPONENT
MACRO PROCESSOR

(Scanner, Tokenizer,
Stack)

MACRO TABLES

Sysday=Thursday
GLOBAL:month=jan
GLOBAL:State=PA

Pprint Code

MACRO CATALOG

%Macro Pprint ;
title ”Stuff for &State";
%if &sysday=Friday %then
%do;
 proc freq

data=sales;

 tables state/missing; run;
%end;
proc

print data=sales;

where state="&state";

sum sales;

run;

%Mend Pprint ;

 %Macro Mmean;
proc

means data= sales;

where state="&state";

run;
%Mend Mmean;Not e t h a t t he m ac ro proc ess or “ c o nsum es ”

tokens.

SYMGET/RESOLVE

CALL SYMPUT

%INCLUDE

CALL EXECUTE

WORD
QUEUE EXECUTE

(SAS EXECUTION)
DATA SET COMPILER

(SAS COMPILATION)

INPUT STACK
%put &&& StNames ;

MACRO CATALOG

Compile

Assign

Execute

Resolve

DATA VECTOR

INPUT BUFFER

MULTI COMPONENT
MACRO PROCESSOR

(Scanner, Tokenizer,
Stack)

MACRO TABLES

GLOBAL:
Stnames=holding1
Holding1=holding2
holding2=NY,NJ,DE

& & & StNames

& holding1

- - - - >& holding1

 Holding2

Rules:

Scan from Left to right.
Pause and evaluate
after finding a “Rule
Object”.

&& evaluates to & and
causes re-scan

& macronameresolves
the macro variable

A period, at the end of
a macro name is an
end of token

Text is held for re-scan

W T
o o
r k
d e
 n
S
c R
a o
n u
n t
e e
r r

Figure 7 Figure 8

EVALUATING THE && OR &&& OR &&&
Tokens like &&&Vname&I are put on the Input Stack and evaluated or cycling between the Macro Processor and the Input Stack. The
Input Stack is a slight misnomer. It is a buffer that allows characters to be taken off the queue but it also allows tokens to be pushed
back onto the Input Stack (queue). An &&&Varname&i is taken off of the Input Queue, and sent to the Macro Processor. The Macro
Processor partially evaluates the token and the “partial results” are pushed back on the queue. Then the cycle repeats until the
&&&varname is fully evaluated. Examine Figure 8 and note the values in the Macro Table. Let us examine what happens when %put
&&&StNames is processed.

The rules for evaluating && are in the box in the Macro Catalog. The rules are:
First: Scan from Left to right. Pause and evaluate after finding a “Rule Object”. A rule object is something for which we have a

rule. More rules follow immediately below.
Second: && evaluates to & and causes re-scan (push the results back on the Input Stack and prepare to take them off again).

SAS knows that when it sees a && there must be additional macro resolution work to be done.
Third: ¯oname causes a resolution of a macro variable. ¯oname is just a request for SAS to resolve a macro

variable.
Fourth: A period, at the end of a macro name, is an end of token flag.
Fifth: Text is held for re-scan. Remember, scanning proceeds in steps. If your scanning finds just text (no &), hold the text for

re-scanning. Unless you made a coding error, the only way that SAS can scan your macro invocation and get just text is if
you have previously coded an &&

Sixth: After applying rules one through five, assemble all objects on the Input Stack before the next rescan.

What SAS does with &&&stnames is shown in Figure 8:
It scans from left to right. When it recognizes && it stops and evaluates the && to an & and raises a flag indicating that the macro
invocation must be scanned again. Then it scans &stnames. It recognizes this as a macro invocation and gets Holding1 from the Macro
Table. Then it re-assembles the objects prior to rescanning. The rescan recognizes &holding1 as a macro invocation and gets the value
holding2 from the Macro Table.

CALL SYMPUT
Call Symput allows your program to interact with the Macro Table at SAS Execution time not at the top of the input stack. It allows you
to write strings into the Macro Table during the SAS Execution of a data step. Remember data is only available to your program when
your code is SAS Executing. Call Symput allows you to take values from a data set, or from data step calculations, and load them into
macro variables. This must happen while the data step is SAS Executing. Note the change in timing. All the macro processing, we have
seen so far, has occurred when the macro trigger reached to top of the Input Stack and was passed to the Macro Processor.

Call Symput creates an entry in the Macro Table at SAS Execution time and takes two parameters, separated by a comma. Call
Symput is difficult to understand because of the many options you can use to pass values to its two parameters, but the basic structure
of the command is simple. You must tell Call Symput the name of the macro variable you want to create (parameter 1) and the value
you want that variable to have (parameter 2). The syntax is: Call Symput(name, value);

Figure 9 shows a fairly complicated use of Call Symput (but still not all the options).
In this paper, we will only apply two rules for getting the parameter values into Call Symput. First; if the parameter value is quoted,
consider it to be a text string, a constant. Second; if the parameter value is not quoted consider it a variable name. If the parameter is a
variable name, go to the PDV and use the current value of the variable in the PDV as the parameter value. In Figure 9, you are using a
data set to create macro variables. The data step has two Call Symput statements and we will examine the first. Look inside the
parenthesis in Figure 9 for the details of the processing. The inside of the parenthesis is complex code because we are instructing SAS
to assemble the parameters, and we are not just typing parameters into the code.

For the first (name) parameter we start with the text string "state" and concatenate information from the variable _N_ in the PDV. Then
there is a comma to separate the parameters. Since the second parameter, state, is not quoted it is an instruction to go to the PDV and
get the value of the variable named state for the observation being processed. State has the value PA.

SYMGET/RESOLVE

CALL SYMPUT

%INCLUDE

CALL EXECUTE

W T
o o
r k
d e
 n
S
c R
a o
n u
n t
e e
r r

MACRO CATALOG

%macro Sales(state);
proc

print

data=NE_regn;

title "Sales for &state";

var

person Sales;

where state ="&state";

run;
%Mend Sales;

%macro Com(state);
proc

print
data=NE_regn;

title "Comm. for
& state";

var

person com;

where state ="&state";

run;
%Mend Comm;

WORD
QUEUEDATA SET interest

NJ Com
PA Sales

COMPILER
(SAS COMPILATION)

INPUT STACK

Compile

Assign

Execute

Resolve

INPUT BUFFER

MULTI COMPONENT
MACRO PROCESSOR

(Scanner, Tokenizer, Stack)

DATA VECTOR _n_ _error_
PA Sa les 1 0

MACRO TABLES

Global State1 PA
Global Rtype1 Sales

EXECUTE (SAS EXECUTION)

data _null_;
set interest;
Call Symput('St at e ' ||left(_n_),St at e);
Call Symput('Rtype''||left(_n_),Rtype);
run;`

The syntax is:
Call Symput (Macro Name , Macro Value);

Arguments: if Quoted->t es t , i f Unquot ed -> get value f r om PDV
Call Symput(State1 , PA);

Call Symput(Rtype1 , Sales);
The macro var. name is text concatenated with _n_ form PDV.

WORD
QUEUE EXECUTE

(SAS EXECUTION)

data _null_ ;
if 0 then set Interest
nobs=nobs;
call
symput(’maxim',nobs);
run;

DATA SET interest
PA Sales
NJ Com

COMPILER
(SAS COMPILATION)

INPUT STACK
data _null_ ;
if 0 then set Interest
nobs=nobs;
call
symput(’maxim',nobs);
run;

%let Maxm= &Maxm;

%simple;

MACRO CATALOG

%macro simple;
%do i = 1 %to &maxm;

proc print
 data=NE_regn;
var
Salesman &&Rtype&i;

where
state=“&&state&i”;
run;

%end;
%Mend simple;

Compile

Assign

Execute

Resolve

CALL SYMPUT

%INCLUDE

CALL EXECUTE

DATA VECTOR

INPUT BUFFER

W T
o o
r k
d e
 n
S
c R
a o
n u
n t
e e
r r

MULTI COMPONENT
MACRO PROCESSOR

(Scanner, Tokenizer,
Stack)

MACRO TABLES

State1=PA
 Rtype1=Sales
State2=NJ
 Rtype2= Com
Maxm=2

Figure 9 Figure 10
WORD
QUEUE EXECUTE

(SAS EXECUTION)
DATA SET COMPILER

(SAS COMPILATION)

INPUT STACK
proc print
data=NE_regn;
var
 Salesman &&Rtype&i;

where
state=“&&state&i”;
run;

MACRO CATALOG

%macro simple;
%do i = 1 %to &maxm;

proc print
 data=NE_regn;
var
Salesman &&Rtype&i;

where
state=“&&state&i”;
run;

%end;
%Mend simple;

Compile

Assign

Execute

Resolve

CALL SYMPUT

%INCLUDE

CALL EXECUTE

DATA VECTOR

INPUT BUFFER

W T
o o
r k
d e
 n
S
c R
a o
n u
n t
e e
r r

MULTI COMPONENT MACRO PROCESSOR
(Scanner, Tokenizer, Stack)

%macro simple;
%do i = 1 %to &maxm;
 proc print
 data=NE_regn;
 var \Salesman &&Rtype&i;
 where state=“&&state&i”;
run;

%end;
%Mend simple;

MACRO TABLES

State1=PA
 Rtype1=Sales
State2=NJ
 Rtype2= Com
Maxm=2

I=1

a Local

Var

I=1

WORD
QUEUE EXECUTE

(SAS EXECUTION)
DATA SET COMPILER

(SAS COMPILATION)

INPUT STACK
proc print
data=NE_regn;
var
 Salesman Sales;

where
state=“PA”;
run;

MACRO CATALOG

%macro simple;
%do i = 1 %to &maxm;

proc print
 data=NE_regn;
var
Salesman &&Rtype&i;

where
state=“&&state&i”;
run;

%end;
%Mend simple;

Compile

Assign

Execute

Resolve

CALL SYMPUT

%INCLUDE

CALL EXECUTE

DATA VECTOR

INPUT BUFFER

W T
o o
r k
d e
 n
S
c R
a o
n u
n t
e e
r r

MULTI COMPONENT
MACRO PROCESSOR

(Scanner, Tokenizer,
Stack)

MACRO TABLES

State1=PA
 Rtype1=Sales
State2=NJ
 Rtype2= Com
Maxm=2

I=1

&&Rtype&I -> &Rtype1 -> Sales

&&state&I -> &Statee1 -> PA

Figure 11 Figure 12

This code, executing on the values in observation 1, creates the macro variable state1 in the Macro Table and assigns it the value PA.
This is shown in Figure 9. Results of fully processing the two observations are shown in the Macro Table in Figure 10.

Figure 10 starts a series of figures that show how the macro variables that you put into the Macro Table can be used in an automatic
manner. The Input Stack in Figure 10 has a bit of code that finds out how many rows are in the data set “interest” and puts that number
into the Macro Table in a variable called Maxm. You will want to process each observation you had in the data set “interest” and the
code in Figure 10 loads the number of observations into a macro variable (Maxm) that you can use as an upper limit on the %do loop.
Note that Figure 10 shows the macro call for the macro %simple working it’s way up the input stack.

When the string %simple reaches the top of the input stack, SAS will invoke and then Macro Execute the macro %simple.

While Macro Executing %simple, the Macro Processor will perform the %do loop twice (the value of &Maxm is the upper bound on the
loop). SAS creates a local macro variable, called I, just for use in the looping.

The Macro Processor moves code to the Input Stack, as is shown in Figure 11. The rules for evaluating && calls are the same as were
described in the previous section. Figure 12 shows the result of evaluating the &&. It is left to the reader to determine what SAS will put
on the Input Stack when the macro variable &i has a value of 2.

CALL EXECUTE
Call Execute simply writes text to the Input Stack as can be seen in Figure 13. The key to the power of Call Execute is what is in the
text you write to the Input Stack. With Call Execute, you can use a data set as a control file (a file of parameters) and use the control file
to write macro calls to the Input Stack.

N

SYMGET/RESOLVE

CALL SYMPUT

%INCLUDE

CALL EXECUTE
MACRO CATALOG

WORD
QUEUEDATA SET interest COMPILER

(SAS COMPILATION)

INPUT STACK

Proc Print data=NE_regn;
title "New Title";
run;

Compile

Assign

Execute

Resolve

INPUT BUFFER

MULTI COMPONENT
MACRO PROCESSOR

(Scanner, Tokenizer,
Stack)

DATA VECTOR

MACRO TABLES

EXECUTE (SAS EXECUTION)

data _null_;
call execute("Proc Print data=NE_regn;");
call execute('title "New Title";');
call execute("run;");
Run;

Rules for the parameter
what is in the ():

If quoted - use the value

If NOT quoted,
go to the PDV
 -look in that variable
 -get the value to use.

W T
o o
r k
d e
 n
S
c R
a o
n u
n t
e e
r r

Call Execute puts text on the Input stack
(in order and near the top).

It’s complexity comes from the fact that it
can take text from:
 Text strings - if quoted
 The Program DataVector - if not quoted
 Macro Variables - if &

SYMGET/RESOLVE

CALL SYMPUT

%INCLUDE

CALL EXECUTE
MACRO CATALOG

%macro SSales(state);
 proc print
data=NE_regn;
 title "Sales for &state";
 var person Sales;
 where state ="&state";
 run;
%Mend SSales;

%macro CCom(state);
proc print

data=NE_regn;
 title "Comm. for
&state";
 var person com;
 where state ="&state";
 run;
%Mend CComm;

WORD
QUEUE COMPILER

(SAS COMPILATION)

INPUT STACK
*Call execute puts stuff on
the input stack;
data _null_;
set interest;
if upcase(Rtype)="SALES"
then call
execute('%SSales('||state||')')
;
else if upcase(Rtype)="COM"
then call
execute('%CCom('||state||')');
run;

Compile

Assign

Execute

Resolve

INPUT BUFFER

MULTI COMPONENT
MACRO PROCESSOR

(Scanner, Tokenizer, Stack)

EXECUTE
(SAS EXECUTION)

DATA VECTOR

MACRO TABLES

DATA SET interest
PA Sales
NJ Com

W T
o o
r k
d e
 n
S
c R
a o
n u
n t
e e
r r

Figure 13 Figure 14

Figure 13 shows the trivial example of Call Execute assembling a proc by writing lines of text to the Input Stack. The writing to the Input
Stack happens at SAS Execution time. When SAS Execution is happening, SAS Execute mode is in total control and no tokens move
through the system. While the data step is SAS Executing, Call Execute statements put code on the Input Stack. That code must wait
on the Input Stack for SAS Execution mode to give up control of the process. No characters are processed by the Word Scanner, and
no tokens flow through the system while SAS Execute is in control.

Call Execute only has one parameter, the text inside the parentheses. As Figure 13 shows; when the Call Execute statement executes,
it just puts that parameter on the Input Stack. The difficulty, and the flexibility, in using Call Execute is when the parameter is not a
simple text string, as was shown in Figure 13. We can assemble the parameter from text strings and the PDV. Lets look at a more
complicated parameter for Call Execute.

Figure 14 shows two compiled macros in the Macro Catalog and a data step containing a Call Execute that is about to be Word
Scanned. Interest is a control file and variable values in the file named interest will both direct the creation of two macros and be
passed as macro parameters to those macros. In the data set interest Figure 14, the variable rtype (with values of Sales and Com) will
be used to select which of the two macro programs in the Macro Catalog is to be put on the Input Stack. The variable state (with values
of PA and NJ) will be a parameter passed to a macro.

Figure 15 shows the Call Execute in operation. To make things easier to read , the SAS Execute box is larger than normal size and the
Call Execute is in its own special box. The line executing in the data step is underlined in gold and the first observation is in the PVD.
The user defined variables in the PDV are state and rtype. The statement if upcase(rtype)="SALES" statement checks the PDV for the
value of rtype (report type) and since rtype is sales SAS processes the end of that if statement. It processes Call Execute shown below.

if upcase(Rtype)="SALES" then Call Execute('%SSales('||state||')');

The complex part of this code is the fact that SAS is assembling the Call Execute parameter (A parameter which, Call Execute will
simply put on the Input Stack). Let us examine the process of assembling the parameter.

SYMGET/RESOLVE

CALL SYMPUT

%INCLUDE

CALL EXECUTE

W T
o o
r k
d e
 n
S
c R
a o
n u
n t
e e
r r

MACRO CATALOG

%macro SSales(state);
 proc print
data=NE_regn;
 title "Sales for &state";
 var person Sales;
 where state ="&state";
 run;
%Mend SSales;

%macro CCom(state);
proc print

data=NE_regn;
 title "Comm. for
&state";
 var person com;
 where state ="&state";
 run;
%Mend CComm;

WORD
QUEUEDATA SET interest

NJ Com

COMPILER
(SAS COMPILATION)

INPUT STACK

Compile

Assign

Execute

Resolve

INPUT BUFFER

MULTI COMPONENT
MACRO PROCESSOR

(Scanner, Tokenizer, Stack)

DATA VECTOR _n_ _error_
PA Sales 1 0

MACRO TABLES

EXECUTE (SAS EXECUTION)

data _null_;
set interest;
if upcase(Rtype)="SALES" then call execute('%SSales('||state||')');
else if upcase(Rtype)="COM" then call execute('%CCom('||state||')');

call execute('%SSales('||state||')');

%SSales(PA)
SYMGET/RESOLVE

CALL SYMPUT

%INCLUDE

CALL EXECUTE

W T
o o
r k
d e
 n
S
c R
a o
n u
n t
e e
r r

MACRO CATALOG

%macro SSales(state);
 proc print
data=NE_regn;
 title "Sales for &state";
 var person Sales;
 where state ="&state";
 run;
%Mend SSales;

%macro CCom(state);
proc print

data=NE_regn;
 title "Comm. for
&state";
 var person com;
 where state ="&state";
 run;
%Mend CComm;

WORD
QUEUEDATA SET interest COMPILER

(SAS COMPILATION)

INPUT STACK

%SSales(PA)

Compile

Assign

Execute

Resolve

INPUT BUFFER

MULTI COMPONENT
MACRO PROCESSOR

(Scanner, Tokenizer, Stack)

DATA VECTOR _n_ _error_
NJ Com 2 0

MACRO TABLES

EXECUTE (SAS EXECUTION)

data _null_;
set interest;
if upcase(Rtype)="SALES" then call execute('%SSales('||state||')');
else if upcase(Rtype)="COM" then call execute('%CCom('||state||')');

call execute('%CCom('||state||')');

%CCom(NJ)

Figure 15 Figure 16

Call Execute assembles the parameter by concatenating three things. First is the quoted string '%Ssales' . Note that it has been single
quoted so that the Word Scanner will not attempt to evaluate %Ssales at SAS Compilation. The || symbols are concatenation operators.
Then, since the next element (state) is unquoted, SAS will get the value of state from the PDV. Then we have || to indicate another
concatenation. Finally, when we add the string ')'.

After the concatenations, the parameter for Call Execute is %sales(PA) and that parameter is placed on the Input Stack. What has
been placed on the input stack is a request to run a macro and the parameter that the macro requires. The string waits on the Input
Stack until the data step finishes processing. Call Execute has allowed us to use a data set , containing conditions and parameter
values, to "make" many macro calls. Figure 16 shows the Input Stack after processing the second observation in the data set. Interest
is a control file. It controls what macros will be run and what parameters the macros will have.

SYMGET & RESOLVE
These two functions are mirror images of Call Symput. They both get values from the Macro Table during SAS Execution and can
often be substituted for each other. They both take just one parameter, the macro variable to be recalled from the macro table. They
differ in their syntax (use of quotes) and Resolve is better able to handle && references. There is little written about these functions
because, it is rare to find a compelling business reason to use them.

The map shows that SAS Execution follows SAS Compilation and that means that Symget and Resolve will perform if the SAS code
that contains these functions has been SAS Compiled. Programmers using compiled SCL code or large precompiled data steps might
profit from using these functions to pass information from the “run time environment” to the compiled code.

Ian Whitlock(1998) shows an interesting use of these functions. He uses Symget to load a data step array with values from macro
variables. His code follows immediately.

%let state1=NY;
%let State2=DE;
%let State3=PA;
%let State4=NJ;

%put _user_;

data _null_;
 array states(4) $ _temporary_;
 Do i=1 to dim(states);
 states(i) = symget("state"||left(put(i,2.))) ;
 end;
 Do i=1 to dim(states);
 Put @1"state" @7 I= @12 States(i);
 end;
run;

The output is:
state i=1 NY
state i=2 DE
state i=3 PA
state i=4 NJ

Dr. Whitlock uses looping, inside a
data step, to access macro variable
information.

This code takes information from the
Macro Symbol Table and puts it into
the PDV.

CONCLUSION
The map of the macro system is a powerful conceptual tool for understanding the macro system and how it works.

REFERENCES
SAS Macro Programming Made Easy By: Michele M. Burlew
Carpenter's Complete Guide to the SAS Macro Language By: Art Carpenter
SAS Macro Language: Reference, Version 6, First Edition Whitlock, Ian(1997) Call Execute: How and Why
Proceedings of the Twenty-first Annual SAS Users Group International, pp. 410-413

Whitlock, Ian(1998) The Resolve Function- What is it good for? Proceedings of the Fifteenth Annual NorthEast SAS
Users Group Conference, pp. 352-353
SAS is a registered trademark or trademark of SAS Institute, Inc. in the USA and other countries. indicates USA registration. Other
brand and product names are registered trademarks of their respective companies

CONTACT INFORMATION
Your comments and questions are valued and encouraged. Contact the author at: russ.lavery@verizon.net

ODS_and_SQL.sas
/**
Section __: Reduce the number of obs in the data set: the slide is crowded
***/
data MyClass;
set SAShelp.class;
if mod(_N_,7) in (0,1,2,4,6,7) ;
label Name="Student name";
run;

/**
Section __: ODS
***/
ods html body="c:\temp\ods_output.html";
proc SQL;
select * , height/age as HtPerYr
from Myclass ;
quit;
ODS HTML close;

/**
Section __:Traffic
***/
proc format ;
value tlite
low - 4.35 = "green"
4.35 <- 5.0 = "yellow"
5.0 <- high = "red" ;
;

proc SQL;
create table Traffic as
select * , height/age as HtPerYr
from Myclass ;
quit;

proc format ;
value tlite
low - 4.35 = "green"
4.35 <- 5.0 = "yellow"
5.0 <- high = "red" ;
;

ods html body="c:\temp\Traffic.html";
proc report nowd data=traffic;
columns name age height HtPerYr;
define name /order;
define age /display;
define HtPerYr/display format=4.1
style(column)={background=tlite.};
run;
ods html close ;

Percentages_Within_Groups.sas
/**
Section __: Reduce the number of obs in the data set: the slide is crowded
***/
data MyClass;
set SAShelp.class;
if mod(_N_,7) in (0,1,2,4,6,7) ;
label Name="Student name";
run;

/**
Section __: counting percenatges of age-sex as percent of sex - counts
***/
Options nocenter;
Proc SQL;
/*create table look as*/
Select O.sex, O.age, Count(*) as count_age_sex
		,calculated count_age_sex/sex_total as Pct_of_Sex
from MyClass as O
		inner join
	(select sex, count(*) as sex_total from MyClass group by sex) as I
	on O.sex=I.sex
	group by O.sex, O.age;
	quit;

PercentStr_and_PercentNRStr_tt05.pdf

1

Paper TT05

An Animated Guide©: How %Str and %NRStr Work
Russ Lavery, Numeric Resources Contractor – Ardmore, PA

SYMGET/RESOLVE

CALL SYMPUT

%INCLUDE

CALL EXECUTE

W T
o o
r k
d e
 n
S
c R
a o
n u
n t
e e
r r

ASSIGN

WORD
QUEUE

MACRO TABLES

EXECUTE
(SAS EXECUTION)

DATA SET COMPILER
(SAS COMPILATION)

INPUT STACK MACRO CATALOG

Compile

Assign

Execute

Resolve

DATA VECTOR

INPUT BUFFER

MULTI COMPONENT
MACRO PROCESSOR

(Scanner, Tokenizer,
Stack)

11

10

9

87

1

2

3

4

5

6

Figure 1

ABSTRACT
This paper builds on a NESUG 2002 paper that described the general functioning of the SAS Macro Processor.
This paper explains details of two macro masking functions: %Str and %NRStr. Basic concepts for this paper are: 1)
the map of the SAS Supervisor 2) Tokens flow/pASS through the parts of the system 3) parts of the map monitor
tokens as they pass through 4) the idea of SAS tokens as rule triggers for actions to be taken by parts of the map and
5) macro masking prevents the triggering of rules by preventing their recognition. Figure 1 is a map of the SAS
system – the SAS Supervisor. It is suggested that this map is a very useful paradigm for understanding the SAS
system. Boxes on the above map are either subroutines or storage areas and tokens flow through the components of
the supervisor as SAS processes programs.

INTRODUCTION
This paper builds on material from a NESUG presentation titled "An Animated Guide: The Map of the SAS Macro
Facility". Basic concepts for this paper are: 1) the map of the SAS supervisor 2) Tokens flow through the parts of the
system 3) parts of the map monitor tokens as they pass through 4) the idea of SAS tokens as rule triggers for actions
to be taken by parts of the map and 5) macro masking prevents the triggering of rules.

Tokens flow through all the parts of the system. Logically, the macro system “sits on top of” the regular SAS system
and exchanges tokens with the SAS system. Parts of the system are always watching for certain types of tokens ,as
the tokens pass through, and will initiate subroutines when these types of tokens are recognized. In the language of
this paper, “tokens trigger rules”. Macro Masking is the process of disguising tokens so that they do not trigger rules
as they pass through “watchpoints” of the system.

Using this map requires a knowledge of the SAS system, the macro system and rules that are applied at each
component in both systems. A review is essential so that readers, who understand the system in their own way, can
have a common vocabulary concerning the SAS system.

2

As an abbreviation, (Fig1-1) stands for the object labeled with a (1) in Figure 1- the data set.

The paper has the following structure:
1) Overview of the Map of the SAS system (overview of the Map of the SAS Supervisor) and a review of tokenization

1A) Non-Macro components of the map and processing non-macro SAS code
1B) A short review of tokens
1C) Review of the Macro Components of the Map and processing SAS code

2) Tokens as rule triggers and parts of the system that monitor tokens and apply rules
3) The need to examine rules for 2 storage areas (Symbol Table and Macro Catalog) and two functions (%Str and
%NRStr)
4) A main confusion in many macro explanations
5) How tokens are masked
6) Rules for the Macro Symbol Table

6A) The effect of %Str on tokens going into, and tokens coming out of, the Macro Symbol Table
6B) The effect of %NRStr on tokens going into, and tokens coming out of, the Macro Symbol Table

7) Rules for the Macro Catalog
7A) The effect of %Str on tokens going into, and tokens coming out of, the Macro Catalog
7B) The effect of %NRStr on tokens going into, and tokens coming out of, the Macro Catalog

8) Manual Unmasking
9) Conclusions, references and acknowledgments and contact information.

The Map of the SAS system can be used as a mental framework for SAS macro processing. The map presented here
is an integration of several maps presented by different authors. The author wishes to acknowledge an intellectual
debt to the authors of the materials cited at the end of the paper.

1) OVERVIEW OF THE MAP OF THE SAS SYSTEM (MAP OF THE SAS SUPERVISOR)
Figure 1 (the main graphic) shows a map of the SAS system, not just the Macro Facility. The control program for the
SAS system is sometimes called the SAS Supervisor and the description of SAS processing in this paper is a
description of the functioning of the SAS Supervisor. It is impossible to discuss the SAS Macro Facility without
placing it in context of the SAS Supervisor’s management of the base SAS system (non-macro processing).

W T
o o
r k
d e
 n
S
c R
a o
n u
n t
e e
r r

by
region
;

where
region
=

WORD
QUEUE EXECUTE

(SAS EXECUTION)
DATA SET

INPUT STACK
;
run;

DATA VECTOR

INPUT BUFFER

COMPILER
(SAS COMPILATION)

Proc Means
Data=year;

Tokens recognized by the word scanner:

Character: String of characters in
single/double quotes.

Numeric: A string of digits, decimals
(dates & times)

Name: The words that SAS recognizes
(e.g. proc, var1, _n_)

Special: Characters other than letters/
numbers (eg. / + = ;)

The word scanner/Token Router also looks for:

End of token: a blank or when another
token begins (& or % or dot)

The Two Macro Triggers: % or & followed
by letter or underscore

‘north east’

The single quote
triggers the word

scanner to:

look for the matching
quote

and assemble ONE
token.

DO NOT evaluate
macro triggers found
inside single quotes.

Figure 2

3

SYMGET/RESOLVE

CALL SYMPUT

%INCLUDE

CALL EXECUTE

W T
o o
r k
d e
 n
S
c R
a o
n u
n t
e e
r r

ASSIGN

WORD
QUEUE

MACRO TABLES

EXECUTE
(SAS EXECUTION)

DATA SET COMPILER
(SAS COMPILATION)

INPUT STACK MACRO CATALOG

Compile

Assign

Execute

Resolve

DATA VECTOR

INPUT BUFFER

MULTI COMPONENT
MACRO PROCESSOR

(Scanner, Tokenizer,
Stack)

Tokens can trigger
rules when they flow

from the input stack to:

 the Word Scanner
the Macro Catalog
the Macro Table

 Tokens flow through the system and trigger rules at
several places

Macro
Compile/Execute

Macro
Assign/Resolve

Word Scanner

Macro
Programs

Macro
Variables

FIGURE 3

1A) NON-MACRO COMPONENTS OF THE MAP & PROCESSING NON-MACRO SAS CODE
Each box in Figure 1 is a subroutine or storage area. A box is a component of the SAS Supervisor or the Macro
Facility, and serves a unique purpose. The blue boxes, and the dark red box, are required for processing regular
SAS code. The light red boxes are used specifically for macro processing. The phrase “the macro system sits on top
of the base SAS system” means that the macro system gets its tokens from the base SAS system and passes its
results (more tokens) back to base SAS (blue boxes) for additional processing.

In Figure 1 the data set (Fig1-1) can be text or a SAS data set. If the data set is a text file, data will flow from the text
file into the Input Buffer (Fig1-2) and then to the Program Data Vector (PDV) (Fig1-3). The input buffer holds one line
of unparsed data from a text file in preparation for passing it to the PDV. The Input Buffer is not used in this
presentation, but is included on the map for completeness. If the data set is a SAS data set, observations are read
directly from the data set into the PDV(Fig1-3).

Understanding the PDV is critical for SAS programmers. It exists in RAM and can be thought of as a one-row Excel®
spreadsheet. Observations are read into the PDV and all calculations, coded in a data step, are performed in the
PDV. When a data step has finished processing an observation, values in the PDV are written to the output file.

It is suggested that the reader look at both Figures 2 through 6 as the next components of the map are discussed.
The tokens flow through the system as is shown in Figure 2. All the tokens shown in following figures were once on
the input stack. The Input Stack (Fig1-4) is a little known part of the SAS system. Submitted code does not go
directly to the compiler, as is often thought, but goes to a holding area called the Input Stack.

The compiler can’t use code without pre-processing and the Input Stack holds code as it waits to be processed.
Individual characters from the top of the Input stack flow into the word scanner/token router (WS/TR) (Fig1-5). The
WS/TR has two functions: 1) It takes individual characters from the Input Stack and assembles them into tokens
(groups of characters that the compiler can process) 2) It also decides if the token should go to the Word Queue
(Fig1-6) or to the "Multi-Component-Macro Processor (Figure 2 shows all tokens going to the Word Queue and Figure
5 shows tokens going to the macro processor).

1B) A SHORT REVIEW OF TOKENS
Tokens have been mentioned quite often and a review of tokens might be appropriate at this time. The SAS system
understands tokens as instructions. Tokens flow through the map of SAS and are the way a programmer to passes
instructions to the SAS system. The conversion of text to SAS tokens is an important, and basic, part of the SAS
system. There are many kinds of tokens but we will only discuss the four most common. They are:

4

Character Tokens: Strings of characters in single/double quotes.
 (note that SAS handles single quoted character strings differently from double quoted character strings)
Numeric Tokens: A string of digits, decimals (dates ×)
Name Tokens: The words that SAS recognizes (e.g. proc, var1, _n_)
Special Tokens: Characters other than letters/numbers (eg. / + = ;)

As the WS/TR it takes characters off the Input Stack and tries to assemble them into tokens, it checks for a couple of
things. First it checks every character it pulls off the Input Stack to see if the token currently being assembled has
ended. The end of a token is indicated by either a blank space, a period or the start of another token (e.g. + or ;).
The WS/TR also checks for two characters called "Macro Triggers". These characters (the & followed by a letter or
underscore or the % followed by a letter or underscore) are signals to the WS/TR that following text should be routed
to the Macro Processor and not to the Word Queue.

The special tokens are troublesome in macro processing. They are very often “rule triggers” or tokens that, as they
pass through certain boxes on the Map, trigger SAS to take some action. It is easier to understand macro
processing if the rules, and “rule applying points” are made more explicit. Below please find some of the rules that
special tokens, and others kinds of tokens, trigger. The rule applying points, and more rules, will be discussed later.

Blank Macro processor will trim leading/trailing blanks - in WS/TR
; End SAS Statement
, Separate Parameters Inside a Function
+ - / * Arithmetic Operators (trigger an arithmetic operation)
**
= EQ Comparison Operators (trigger an evaluation)
 LT GT < >
 LE GE
& | NOT Logical Operators–differ from Comparison operators (trigger a logical evaluation)
 OR AND
(Start to Collect a Parameter List for a Function
) End of collecting a Parameter List for a Function
‘ “ Look for the Matching Component of the pair of quotes
% & Macro Triggers
 &name Macro Resolution
 %name Macro Invocation

The Word Queue (Fig1-6) holds six tokens and allows the supervisor to access "previously assembled" tokens and
build context for the token currently being assembled in the word scanner. The SAS Compiler (Fig1-7) drives the
system. It requests tokens from the word scanner until it receives a token that indicates a step boundary (e.g. run,
quit, proc). In Figure 2, the compiler is waiting to receive the run that is on the Input Stack.

When the SAS Compiler receives a “step boundary token” (run, quit and others), it takes total control of the system
and attempts to compile code. No tokens are assembled in the word scanner, or moved, while the SAS compiler is in
control. If the code is correct (matching quotes, semicolons etc.), it will be compiled and passed to the SAS Execute
module. The SAS Execute (Fig1-8) module takes total control of the process. Other parts of the map, become
inactive. If the job has no run errors (data mismatches, etc.) and the code runs. Generally, tokens do not move while
the SAS Execute module is in control.

1C) REVIEW OF THE MACRO COMPONENTS OF THE MAP & PROCESSING MACRO SAS CODE
The Macro Processor (Fig1-9) is shown as a single box, but actually has many components. The Macro Processor
has its own scanner, tokenizer and stack. It also has major components called the “Open Code handler” and the
%Eval. Due to space limitations, this sub-system will be shown as a box, and components described as needed.
For all its complexity, the macro processor is simply a token “management system”. It is a token storage and retrieval
system, much like an automated version of the Microsoft clipboard. It (generally) takes text/tokens from the Input
Stack, stores them in one of two areas (Fig1-10 & 11), and puts those tokens to the Input Stack at a later time.

The macro system has two token storage areas: the Macro Symbol Table (Fig1-10) and the Macro Catalog (Fig1-11).
There are two different storage areas because there are two different storage processes. The Macro Symbol Table is
like a memory location on a calculator. It stores and recalls tokens. The Macro Catalog is a storage area that,
combined with the Macro Processor, allows conditional processing of tokens. It allows programming steps to be
applied to the process of recalling tokens. Using statements like %if you can control whether a certain section of
code (a group of tokens) gets moved to the Input Stack. Using statements like %do allows you to control how many
times a section of code is recalled and moved to the Input Stack.

The Token Router part of the WS/TR decides if tokens are sent to the Macro Processor or to the Word Queue. The
Macro Processor 1) either stores the tokens on one of the two types of memory storage, or 2) uses the token to
trigger recall of other tokens, from one of the two memory storage areas. Token flow details will be developed later.

5

2) TOKENS AS RULE TRIGGERS AND PARTS OF THE SYSTEM THAT MONITOR TOKENS AND
APPLY RULES
As can be seen in Figure 3, parts of the Map of the SAS system are constantly alert, monitoring tokens as they pass.
Arrows indicate paths of token flow and certain tokens, at certain spots in the system, will trigger the application of a
rule (start a subroutine). Not all boxes on the Map are “rule trigger points” and the rules that are triggered (the
process kicked off) by a token differ from box to box. The WS/TR is a major “rule sensing spot”, as is the Macro
Processor itself. While mentioning other spots, this paper will concentrate on these two.

3) THE NEED TO EXAMINE RULES FOR 2 STORAGE AREAS (TABLE AND CATALOG) & 2
FUNCTIONS (%STR AND %NRSTR)
It is logical to conclude that, since the two storage areas have different capabilities, the processes for getting tokens
into and out of the two types of storage areas are different. It is also logical to conclude, since the tokens will be
processed differently depending on their destinations, that tokens will trigger different rules- depending on their
destination. Simply said, a token going into the Symbol Table might trigger a rule, but the same token, going to the
Macro Catalog, might not trigger a rule- or might trigger a different rule. This difference in token processing, the fact
that processing depends on the destination of the tokens, forces a structure on the study of Macro Masking and on
this article. It is key to identify rule trigger points and list the possible rules that can be triggered at particular points.

4) A MAIN CONFUSION IN MANY MACRO EXPLANATIONS
A source of confusion in most macro documentation is the inappropriate re-use of the words “compile” and “execute”
(example %Str and %NRstr are compile functions). SAS performs at least three “compiles” and three “executes” in a
complicated macro program. These three compiles and executes have very different rules, do very different things,
and fail in very different ways. Calling these three different processes by the same names makes the macro process
harder to understand. As shown in Figure 1 shows, this paper will give the different compiles and executes different
names. The names are: SAS Compile, SAS Execute, Macro Compile, Macro Execute, Assign and Resolve.

We all have experience with SAS Compile and SAS Execute. They are the modules that process regular SAS code.
The other compiles and executes are associated with loading code into, and removing code from, the two macro
storage areas. Putting tokens into the Macro Symbol Table will be called an “Assign”. Removing tokens from the
Symbol Table will be called a “Resolve”. Putting tokens into the Macro Catalog will be “Macro Compilation”.
Removing tokens from the Macro Catalog will be called “Macro Execution”.

5) HOW TOKENS ARE MASKED
Characters are really stored as numbers and translated to human readable symbols for display. When SAS masks a
character, it adds a constant to that number (character), and “remembers” what it did. Computer terminals, and
programs, only need 127 characters and the ASCII character set has space for 256. SAS masks by adding a
constant to the number (character). The constant is large enough so that the sum of the original number plus the
constant is greater than 127 (it is “shifted” out of the range of printable characters). In V8 SAS, all shifted characters
print as a small box. In V9, while the symbols are without meaning to the programmer, they are not all the same.

Parts of the SAS system have rules that will be triggered by both the shifted and original character, but most
parts/rules will not respond to the shifted character. Generally, masked, or shifted tokens, flow pass the “rule trigger
points” in the system without being recognized and without triggering rules.

6

Add 100 to the
ASCII value

FIGURE 4

6) RULES FOR THE MACRO SYMBOL TABLE (A.K.A. THE SYMBOL TABLE)

SYMGET/RESOLVE

CALL SYMPUT

%INCLUDE

CALL EXECUTE

W T
o o
r k
d e
 n
S
c R
a o
n u
n t
e e
r r

WORD
QUEUE EXECUTE

(SAS EXECUTION)
DATA SET

INPUT STACK

%let month=jan;

start of reports;
proc means data=year;
where month=“&month”;
run;

Proc print data=year;
where month=“&month”;
run;
****end of report*****;

MACRO CATALOG

Compile

Execute

Resolve

DATA VECTOR

INPUT BUFFER

MULTI COMPONENT
MACRO PROCESSOR

(Scanner, Tokenizer,
Stack)

Assign

%let
Month=jan;

COMPILER
(SAS COMPILATION)

MACRO TABLES

Sysdate=01JAN01

%L is a macro trigger
and triggers the rule
in the token router:
send tokens to the
macro processor.

The semicolon at the
end of the statement
triggers the rule in
the token router:
go back to normal

processing of tokens

MACRO TABLES

Sysdate=01JAN01
GLOBAL:month=jan

The %let (and the semicolon) are instructions to the macro processor.
and are not stored in the Macro Symbol Table.

 Note that the macro processor “consumes” tokens.

Figure 5

7

=
Year
;

where
month
=

COMPILER
(SAS COMPILATION)

***start of
reports***;
proc means
data

“

SYMGET/RESOLVE

CALL SYMPUT

%INCLUDE

CALL EXECUTE

W T
o o
r k
d e
 n
S
c R
a o
n u
n t
e e
r r

WORD
QUEUE EXECUTE

(SAS EXECUTION)
DATA SET

INPUT STACK

&month”;
run;

Proc print data=year;
where month=“&month”;
run;
****end of report*****;

MACRO CATALOG

Compile

Assign

Execute

Resolve

DATA VECTOR

INPUT BUFFER

MULTI COMPONENT
MACRO PROCESSOR

(Scanner, Tokenizer,
Stack)

MACRO TABLES

Sysdate=01JAN01
GLOBAL:month=jan

& varname is a
 macro rule trigger

and triggers the rule:

go to the symbol table

find the variable

get the value

“

FIGURE 6

The Macro Table (or Macro Symbol Table or Symbol table) is used to store strings that get recalled to the input stack
at a later time. The Macro Symbol Table can be thought of as something like the clipboard in Windows® products.
The Symbol Table, generally, is not used to conditionally process code. This paper calls putting values into the
Symbol Table "Assigning” a macro value and the process is illustrated in Figure 5. Text strings are often Assigned
(put into the Macro Table) with commands like:

%Let comp= The Acme Storage Company; or %Let year= 1988;

Commands, like those immediately above, are typed into the body of SAS code and when they reach the top of the
Input Stack the WS/TR examines them. The “macro trigger tokens” %L (remember a % or & followed by a letter or
an underscore is a macro trigger) triggers a rule in the Token Router part of the WS/TR. The rule is: pass this token,
and following tokens up to the first semicolon, to the Macro Processor for further processing. The semicolon at the
end of the %Let statement, as it passes through the WS/TR on its way to the macro processor, triggers a WS/TR rule:
stop sending tokens to the macro processor.

In Figure 5, the information on the right of the equality in the %Let is simple text. The macro processor creates a
macro variable called month and assigns it the value jan. The %Let statement puts the text between the equal sign
and the first semicolon into a named storage area (here, the name is month) in the Macro Symbol Table.

In Figure 6, we see the start of Macro Resolution. The token &month has reached the top of the input stack and is
being passed to the WS/TR. The two characters &m are a macro trigger and trigger the rule in the WS/TR: “send this
one token to the Macro Processor”. Figure 7 shows the token being passed through the Word Scanner to the Macro
Processor. Figures 7 and 8 show how the Macro Processor (MP) responds to that token. The MP recalls tokens
from the Macro Symbol Table to the top of the input stack.

As the tokens pass through the macro processor, on the way to the Symbol Table, (see Figure 7) they can trigger
rules. If the right hand side of the %Let statement is not simple text, but contains macro triggers, the triggers are
evaluated as part of the process of being stored in the Macro Symbol Table. Figures 9 and 10 develop some of the
issues we will explore with %Str and %NRStr masking and the Macro Symbol Table. %Str and %NRStr act as tokens
flow into the two macro storage areas.

8

W T
o o
r k
d e
 n
S
c R
a o
n u
n t
e e
r r

=
Year
;

where
month
=

COMPILER
(SAS COMPILATION)

***start of
reports***;
proc means
data

“

SYMGET/RESOLVE

CALL SYMPUT

%INCLUDE

CALL EXECUTE

WORD
QUEUE EXECUTE

(SAS EXECUTION)
DATA SET

INPUT STACK

”;
run;

Proc print data=year;
where month=“&month”;
run;
****end of report*****;

MACRO CATALOG

Compile

Assign

Execute

Resolve

DATA VECTOR

INPUT BUFFER

MULTI COMPONENT
MACRO PROCESSOR

(Scanner, Tokenizer,
Stack)

MACRO TABLES

Sysdate=01JAN01
GLOBAL:month=jan

& month

& varname is a
 macro rule trigger

and triggers the rule:

go to the symbol table

find the variable

get the value

FIGURE 7

=
Year
;

where
month
=

SYMGET/RESOLVE

CALL SYMPUT

%INCLUDE

CALL EXECUTE

W T
o o
r k
d e
 n
S
c R
a o
n u
n t
e e
r r

WORD
QUEUE EXECUTE

(SAS EXECUTION)
DATA SET

INPUT STACK

jan”;
run;

Proc print data=year;
where month=“&month”;
run;
****end of report*****;

MACRO CATALOG

Compile

Assign

Execute

DATA VECTOR

INPUT BUFFER

Resolve

MULTI COMPONENT
MACRO PROCESSOR

(Scanner, Tokenizer,
Stack)

MACRO TABLES

Sysdate=01JAN01
GLOBAL:month=jan

Taking tokens
out of storage

is called
MACRO EXECUTION

Taking tokens out
of storage
is called

Resolution

and put the
resolved value

on the input stack

COMPILER
(SAS COMPILATION)

***start of
reports***;
proc means
data

“

jan

FIGURE 8
Some of the rules applied (and that can be blocked by %Str and %NRStr) as tokens flow into the Macro Symbol
Table are:
1) The syntax of a %Let is: % let macro_name = value to be stored; (Fig-5)
2) The first semicolon ends a %Let statement (Fig-9)
3) The %Let trims leading and trailing blanks that are on the right of the =.
4) Macro functions (%upcase, %substr etc) are evaluated before tokens go into the Macro Symbol Table (Fig-10)
5) Macro Triggers (& and %) are resolved/executed before tokens go into Macro Symbol Table. (Fig-10)
6) The Macro Processor looks for matching quotes on the right side of the equal sign in the %Let.

9

In Figure 9, the programmer wants to create “a cheat”. He wants to store in a macro variable called oops, the text:
Proc print; run;

Mistakenly, he codes and runs the following
 %Let oops= Proc print; run;

His intention is to use &oops to recall the Proc Print; run; paragraph to the input stack, and run it. He intends
to use this “cheat” to save some typing when printing the most recently created data set. This “cheat” will not
function properly because of how it is stored in the Macro Symbol Table. The Macro Processor would store the string
“Proc Print” in the Macro Symbol Table and leave
 Run; on the input stack.
Some rules for this process are shown in the graphics below.

SYMGET/RESOLVE

CALL SYMPUT

%INCLUDE

CALL EXECUTE

WORD
QUEUE EXECUTE

(SAS EXECUTION)
DATA SET COMPILER

(SAS COMPILATION)

INPUT STACK

start of reports;
proc means data=year;
where month=“&month”;
run;

Proc pr int dat a=year ;
where month=“&month”;
run;
****end of report*****;

MACRO CATALOG

Compile

Assign

Execute

Resolve

DATA VECTOR

INPUT BUFFER

W T
o o
r k
d e
 n
S
c R
a o
n u
n t
e e
r r

MULTI COMPONENT
MACRO PROCESSOR

(Scanner, Tokenizer,
Stack)

MACRO TABLES
Sysdate=01JAN01

GLOBAL:month=jan

Note that the macro processor “consumes” tokens.
%let (and the semicolon) are instructions to the macro processor.

%let (and the semicolon) are not in the Macro Symbol Table

IF we want the first semicolon to be seen as text
, and not a rule trigger,

we must disguise it- - Mask it- - macro quote it

We should know these three %let Syntax Rules:

%let Varname=value;

Evaluate & and %.

The first semicolon ends the command .

%let oops=Proc Print ; Run ;

We would have a problem. SAS would store

GLOBAL: oops= proc print

We should know these three %let Syntax Rules:

%let Varname=value;

Evaluate & and %.

The first semicolon ends the %let command .

Remove leading and trailing blanks

%let oops=Proc Print ; Run ;

We would have a problem. SAS would store

GLOBAL: oops= proc print

FIGURE 9

INPUT STACK MACRO CATALOG

MACRO TABLES

Sysdate=01JAN01
GLOBAL:month=jan

SYMGET/RESOLVE

CALL SYMPUT

%INCLUDE

CALL EXECUTE

DATA VECTOR
W T
o o
r k
d e
 n
S
c R
a o
n u
n t
e e
r r

INPUT BUFFER

WORD
QUEUE COMPILER

(SAS COMPILATION)
EXECUTE
(SAS EXECUTION)

DATA SET

Compile

Assign

Execute

Resolve

MULTI COMPONENT
MACRO PROCESSOR

(Scanner, Tokenizer,
Stack)

This Compile/Assign checks for:
 & and %, the first semicolon, matching quotes

and it

evaluation of macro functions (%scan etc.)
resolution/macro execution of macro triggers(& and %):

Example of Resolution:

With month in the macro table as below, if we issued

%let TimePrd=&month;

SAS would not store in the table
timePrd=&month

but would evaluate the macro &month to jan and store

GLOBAL: timePrd=jan

This Compile/Assign checks for:
 & and %, the first semicolon, matching quotes

and it

evaluation of macro functions (%scan etc.)
resolution/macro execution of macro triggers(& and %):

Example of Resolution:

With month in the macro table as below, if we issued

%let TimePrd=%upcase(&month);

SAS would not store in the table
timePrd=%upcase(&month)

but would evaluate the macro &month to jan and store

GLOBAL: timePrd=JAN

triggers

The %let (%upcase & semicolon) are instructions to the macro processor.
and are not stored in the Macro Symbol Table.

 Note that the macro processor “consumes” tokens.

%Let timePrd
=

%upcase(&month)

FIGURE 10

6A) THE EFFECT OF %STR ON TOKENS GOING INTO, AND TOKENS COMING OUT OF, THE MACRO SYMBOL TABLE
The rules, given above, allow us to see a problem with Figure 9. In Figure 9, the first semicolon, after the %Let,
triggers a rule in the WS/TR. The rule is: “stop sending tokens to the macro processor”. If we want to have this
semicolon not trigger the rule in the WS/TR, we must mask it so that the WS/TR does not recognize it.
In the figure below, the semicolons have been masked. This is indicated by the semi-transparent triangles covering
the semicolons. This is a convention that will be carried through the paper.

SYMGET/RESOLVE

CALL SYMPUT

%INCLUDE

CALL EXECUTE

W T
o o
r k
d e
 n
S
c R
a o
n u
n t
e e
r r

ASSIGN

WORD
QUEUE

MACRO TABLES

Global: oops
 Proc Print ; run ;

EXECUTE
(SAS EXECUTION)

DATA SET COMPILER
(SAS COMPILATION)

INPUT STACK

&OOPS

MACRO CATALOG

Compile

Assign

Execute

Resolve

DATA VECTOR

INPUT BUFFER

MULTI COMPONENT
MACRO PROCESSOR

(Scanner, Tokenizer,
Stack)

MASK

FIGURE 11

10

SYMGET/RESOLVE

CALL SYMPUT

%INCLUDE

CALL EXECUTE

W T
o o
r k
d e
 n
S
c R
a o
n u
n t
e e
r r

ASSIGN

WORD
QUEUE

MACRO TABLES

Global: oops
 Proc Print ; run ;

EXECUTE
(SAS EXECUTION)

DATA SET COMPILER
(SAS COMPILATION)

INPUT STACK

 Proc Print ; run ;

MACRO CATALOG

Compile

Assign

Execute

Resolve

DATA VECTOR

INPUT BUFFER

MULTI COMPONENT
MACRO PROCESSOR

(Scanner, Tokenizer,
Stack)

FIGURE 12
To store the full print paragraph in the Macro Symbol Table the programmer must code:

%Let oops= %Str(proc print; run;) ;

The %Str, some think, executes (masks tokens) in the WS part of the WS/TR as the characters flow from the input
stack through the WS/TR. It is thought that the first unmasked semicolon is a rule trigger for the WS/TR, and to not
have it trigger a rule, it must be masked before/while in the WS/TR.

The masked/shifted semicolons flow through the WS/TR and do not trigger the Token Router rule: “stop sending
tokens to the macro processor (send them to the word Queue)”. When the code above executes, all the tokens in
parentheses would be sent into the Macro Symbol Table, as is shown in Figure 11. Figure 11 shows the masked
semicolons stored in the Macro Symbol Table and some boxes at the start and end of the string of tokens.

These boxes are not masked parenthesis from the %Str() function, but are non-printable characters that hold
information SAS uses for internal processes. Many different masking functions can be used to mask a string and so
SAS places characters, at the start and end of the masked string, to identify what type of masking was applied.
Different masking functions add different non-printable characters, though they all look like boxes when they appear in
a V8 log.

SYMGET/RESOLVE

CALL SYMPUT

%INCLUDE

CALL EXECUTE

W T
o o
r k
d e
 n
S
c R
a o
n u
n t
e e
r r

ASSIGN

Proc
Print
;

run
;

WORD
QUEUE

MACRO TABLES

Global: oops
 Proc Print ; run ;

EXECUTE
(SAS EXECUTION)

DATA SET COMPILER
(SAS COMPILATION)

INPUT STACK MACRO CATALOG

Compile

Assign

Execute

Resolve

DATA VECTOR

INPUT BUFFER

MULTI COMPONENT
MACRO PROCESSOR

(Scanner, Tokenizer,
Stack)

FIGURE 13

INPUT STACK

%Let TimePrd =
 %upcase(&month);

MACRO CATALOG

MACRO TABLES

Sysdate=01JAN01
GLOBAL:

 month=jan

SYMGET/RESOLVE

CALL SYMPUT

%INCLUDE

CALL EXECUTE

DATA VECTOR
W T
o o
r k
d e
 n
S
c R
a o
n u
n t
e e
r r

INPUT BUFFER

WORD
QUEUE COMPILER

(SAS COMPILATION)
EXECUTE
(SAS EXECUTION)

DATA SET

Compile

Assign

Execute

Resolve

MULTI COMPONENT
MACRO PROCESSOR

(Scanner, Tokenizer,
Stack)

FIGURE 14

11

When the &oops reaches the top of the input stack (Figure 11), the macro variable is Resolved and the tokens are
recalled to the input stack (Figure 12). At this time the semicolons are still masked.

The compiler requests tokens, and tokens flow along the path: Input Stack – WS/TR – Word Queue - Compiler. The
masked semicolons do not trigger rules in the WS/TR (if any rules were appropriate) and simply flow into the Word
Queue. Between the third and fourth position in the Word Queue is a subroutine called the automatic unmasking
barrier. Masked tokens are automatically unmasked at this point. In Figure 13, the semicolon after the print has been
unmasked, while the semicolon after the run has not yet been unmasked. The SAS compiler would be confused by
masked tokens and the automatic unmasking barrier insures that the SAS compiler never encounters masked tokens.

References describe %Str() and %NRStr() as compile functions. This means they have their effect on tokens as the
tokens are flowing into the storage areas (on Assignment and Macro Compile – but not SAS Compile). The character
strings %Str or %NRStr are never stored in either type of storage area. What is stored is the result of their actions
on the tokens inside the trailing parentheses - those tokens after masking. %Str will mask many tokens. The list is :
+ -*/<>= ^; , blank AND OR NOT NE LE LT GE GT. Very importantly, %Str does NOT mask the two characters that
start macro triggers: the & and the %. Since %Str does not mask % and &, it will not prevent the execution of macro
functions in Assignment. This characteristic of %Str, is shown below.

%Let month=jan;
%Let TimePrd =%upcase(&month);

%put _user_;

--LOG--
GLOBAL MONTH jan
GLOBAL TIMEPRD JAN

6B) THE EFFECT OF %NRSTR ON TOKENS GOING INTO, AND TOKENS COMING OUT OF, THE MACRO SYMBOL TABLE
Figure 10 showed that macro triggers complicate storing characters in the Symbol Table. % and & are evaluated as
tokens flow into the Macro Symbol Table. Issues mentioned in Figure 10 are developed in Figures 14 to 18,
specifically issues relating to the functioning of %NRstr.

INPUT STACK

&month);

MACRO CATALOG

MACRO TABLES

Sysdate=01JAN01
GLOBAL:month=jan

SYMGET/RESOLVE

CALL SYMPUT

%INCLUDE

CALL EXECUTE

DATA VECTOR
W T
o o
r k
d e
 n
S
c R
a o
n u
n t
e e
r r

INPUT BUFFER

WORD
QUEUE COMPILER

(SAS COMPILATION)
EXECUTE
(SAS EXECUTION)

DATA SET

Compile

Assign

Execute

Resolve

MULTI COMPONENT
MACRO PROCESSOR

(Scanner, Tokenizer,
Stack)

&month

%let TimePrd =
 %Upcase(

FIGURE 15

INPUT STACK

jan);
MACRO CATALOG

MACRO TABLES

Sysdate=01JAN01
GLOBAL:month=jan

SYMGET/RESOLVE

CALL SYMPUT

%INCLUDE

CALL EXECUTE

DATA VECTOR
W T
o o
r k
d e
 n
S
c R
a o
n u
n t
e e
r r

INPUT BUFFER

WORD
QUEUE COMPILER

(SAS COMPILATION)
EXECUTE
(SAS EXECUTION)

DATA SET

Compile

Assign

Execute

Resolve

MULTI COMPONENT
MACRO PROCESSOR

(Scanner, Tokenizer,
Stack)

jan

%let TimePrd =
 %Upcase(

FIGURE 16

Figure 14 is the starting point for discussing %NRStr. There is a macro variable called month in the Symbol Table
with a value of jan (note that jan is in lower case). A suggested process for loading a macro called TimePrd into the
Symbol Table is shown in Figures 14 to 17. In Figure 14, the WS/TR recognizes the Macro trigger %L as it takes
characters from the input stack. Tokens flow to an internal stack in the macro processor until the WS/TR encounters
the macro trigger &m. It passes &month to the macro processor and jan is returned to the input stack. The WS/TR
resumes passing tokens to the Macro Processor stack. When the Macro Processor receives the semicolon, it creates
the macro variable TimePrd and the %upcase executes and JAN is stored in the symbol table. -see Figure 17.
Macro invocations (& and %) and functions are evaluated as tokens are loaded into the Symbol Table.

%NRStr masks all the tokens that are masked by %Str and, in addition, the two tokens that start macro triggers. I
suggest that %NRSTR performs its actions in the WS/TR and the results of the Masking are passed on to the Macro
Processor. Workings of %NRSTR are illustrated below.
%Let month=jan;
%Let Cmplx=%NRSTR(%upcase(&month));

%put _user_;
%put &cmplx;

28 %put _user_;
GLOBAL MONTH jan
GLOBAL CMPLX +•upcase(month) —
GLOBAL TIMEPRD JAN
%put &Cmplx;
 %upcase(&month)

& month resolves and Function
executes. TimePrd is All Caps.

V9.12 Log does not
use boxes to show
masking

%NRStr blocks Resolution of &month
and the execution of %UPcase!! A
Masked & is stored in the Symbol .table!!

12

The process for Cmplx is not illustrated in detail, but an interim step is shown in Figure 18. At this point, the WS/TR
has masked the characters that are rule triggers and the %Let command is in the “internal stack” of the Macro
Processor-about to be executed. Masking is indicated by semi-transparent triangles covering the characters and by
the boxes at the start and end of the masked string. Note that the % and & are both masked.

As seen above, the command %put _user_ does not attempt to Resolve/unquote any macro invocations in the
symbol table. The command %put &cmplx will unmask tokens and cause resolved tokens to be put to the log. Note
that + • are two characters. The first is the internal SAS symbol that indicates that this string has been masked by
%NRStr and the second character is the (v 9.12) masked representation of the %.

INPUT STACK MACRO CATALOG

MACRO TABLES

Sysdate=01JAN01
GLOBAL:month=jan

SYMGET/RESOLVE

CALL SYMPUT

%INCLUDE

CALL EXECUTE

DATA VECTOR
W T
o o
r k
d e
 n
S
c R
a o
n u
n t
e e
r r

INPUT BUFFER

WORD
QUEUE COMPILER

(SAS COMPILATION)
EXECUTE
(SAS EXECUTION)

DATA SET

Compile

Assign

Execute

Resolve

MULTI COMPONENT
MACRO PROCESSOR

(Scanner, Tokenizer,
Stack)

%let TimePrd =
 %Upcase(jan);

Global: TimePrd=JAN

FIGURE 17

INPUT STACK MACRO CATALOG

MACRO TABLES

Sysdate=01JAN01
GLOBAL:month=jan

Global:
TimePrd=JAN

SYMGET/RESOLVE

CALL SYMPUT

%INCLUDE

CALL EXECUTE

DATA VECTOR
W T
o o
r k
d e
 n
S
c R
a o
n u
n t
e e
r r

INPUT BUFFER

WORD
QUEUE COMPILER

(SAS COMPILATION)
EXECUTE
(SAS EXECUTION)

DATA SET

Compile

Assign

Execute

Resolve

MULTI COMPONENT
MACRO PROCESSOR

(Scanner, Tokenizer,
Stack)

%let Cmplx =

 %upcase (&month))

FIGURE 18

7) RULES FOR THE MACRO CATALOG

SYMGET/RESOLVE

CALL SYMPUT

%INCLUDE

CALL EXECUTE

W T
o o
r k
d e
 n
S
c R
a o
n u
n t
e e
r r

ASSIGN

WORD
QUEUE

MACRO TABLES

EXECUTE
(SAS EXECUTION)

DATA SET COMPILER
(SAS COMPILATION)

INPUT STACK MACRO CATALOG

Compile

Assign

Execute

Resolve

DATA VECTOR

INPUT BUFFER

MULTI COMPONENT
MACRO PROCESSOR

(Scanner, Tokenizer,
Stack)

Tokens can trigger
rules when they flow

from the input stack to:

 the Word Scanner
the Macro Catalog
the Macro Table

 Tokens flow through the system and trigger rules at
several places

Macro
Compile/Execute

Macro
Assign/Resolve

Word Scanner

Macro
Programs

Macro
Variables

FIGURE 19

SYMGET/RESOLVE

CALL SYMPUT

%INCLUDE

CALL EXECUTE

W T
o o
r k
d e
 n
S
c R
a o
n u
n t
e e
r r

ASSIGN

WORD
QUEUE EXECUTE

(SAS EXECUTION)
DATA SET COMPILER

(SAS COMPILATION)

INPUT STACK

dat a sales;
infile datalines;
input state $ zip $ sales
Prod $;
dat al ines;
PA 19103 20 Gizmo
PA 19104 30 DoDad
PA 19104 20 DoDad
PA 19104 10 Gizmo
MORE CODE NOT SHOWN

Compile

Assign

Execute

Resolve

DATA VECTOR

INPUT BUFFER

MULTI COMPONENT
MACRO PROCESSOR

(Scanner, Tokenizer,
Stack)

MACRO TABLES

Sysdate=01JAN01
GLOBAL:month=jan

MACRO CATALOG
%Macro Pprint;
title ”Stuff for &State";
%if & sysdate=05JAN01
%then
%do;;
 proc freq data=sales;
 tables state/missing; run;
%end;
proc print data=sales;
 where state="&state";
 sum sales;
 run;
%Mend Pprint;

REVIEW

Some items are stored
partially compiled : %If,
%while, %do, etc..

Some Items are stored
as text:

Macro Var References

Nested Macro Calls

Nested Macro
Definitions

Macro Functions
(except %str and
%Nrstr)

Arithmetic and Logical
macro expressions

Model Text

%CMS and %TSO
commands

FIGURE 20

This section will discuss the effects of %Str and %NRStr on tokens going into, and flowing out of, the Macro Catalog
(Fig1-11). Figure 19 shows some of the paths tokens can take through the SAS supervisor and places where rules
are triggered. Since the underlying paradigm for this paper is that macro masking prevents tokens from triggering
rules, we need to understand the rules for tokens flowing into the Macro Catalog and rules for tokens flowing out of
the Macro Catalog. Rules applied to tokens entering the Macro Catalog are illustrated in Figures 20 to 22.

Unfortunately, the amount of code that must be shown requires that the size of different boxes in the map be
changed. Not changing the map has been a goal of this paper but can no longer be avoided. In Figure 21, the Input
Stack is enlarged and in Figures 20 and 22, the Macro Catalog is enlarged.

Figure 20 reviews several important rules of Macro Compilation. As tokens flow into the Macro Catalog (are Macro
Compiled) the Macro Compiler/Processor checks that for every %if there is a %then. Every %do must have a %end.

The tokens starting with a % (%if %then %do etc) are stored in a partially compiled form. Most other tokens are
stored as text. An additional rule is that the first semicolon ends a %then statement and this can be seen in Figure
21. Macro Compilation is not a very complex process.

13

Unlike macro variable references/invocations (eg. &state) flowing to the Macro Symbol Table, there is no attempt to
evaluate the macro references/invocations as they flow into the Macro Catalog. These will be evaluated on Macro
Execution, when the tokens flow out of the catalog. Accordingly, tokens like &sysdate and &state will be stored as
text, as is shown in Figure 20.

There is no attempt to evaluate the truth of the %if %then statement as tokens flow into the Macro Catalog. In fact,
there is no checking to see if any logical statement exists between the %if and %then tokens. The truth of the %if will
be evaluated as tokens flow out of the Macro Catalog through the Macro Processor.

Unlike what happens as tokens flow into the Symbol Table, macro functions are not evaluated as the tokens flow into
the Catalog- EXCEPT for %Str and %NRStr. These functions are the subject of this paper and we will see the effect
of these functions in following slides.

MACRO CATALOG

DATA SETS SALES
bob CT 2
sue MA 3
ed MA 1

SYMGET/RESOLVE

CALL SYMPUT

%INCLUDE

CALL EXECUTE

W T
o o
r k
d e
 n
S
c R
a o
n u
n t
e e
r r

WORD
QUEUE EXECUTE

(SAS EXECUTION)
COMPILER
(SAS COMPILATION)

Compile

Assign

Execute

Resolve

DATA VECTOR

INPUT BUFFER

MULTI COMPONENT
MACRO PROCESSOR

(Scanner, Tokenizer,
Stack)

How Does Quoting Work?

AUTOMATIC SYSLAST WORK.SALES
Global sumsales 26
Global whosold 8

Try to compile the macro

INPUT STACK

%macro addcode;
%if &whosold EQ 9 %then
 %put "Everyone sold this month" ;
%else %if &whosold LT 9 %then
 title"Who did not sell";
 proc sort data=one;
 by state name;
 proc print; run; ;
%else
 %do;
 title "too many salespeople” ;
 %put "Data Problem too many salespeople” ;
 Proc Print data=one ;
 run ;
 %end;

title "";
%mend addcode;

the macro
will not
compile

Rule is: First
semicolon ends an
%IF or %ELSE %IF;

Rule is: Anything
between %do; and

%end; is text.

For a simple life,
always use the

%do %end
syntax.

FIGURE 21

MACRO CATALOG
%macro addcode;
%i f & whosold EQ 9 %then

%put " Everyone so ld t h is m ont h"
;
%el se %i f & whosold LT 9 %then
 %str(t i t le " Who d i d not sel l " ;

proc sor t dat a=one ;
by s t a t e nam e ;
proc print ; run ;) ;

%el se
 %do;

t i t l e " t oo m any sal espeople" ;
%put "Dat a Problem t oo m any
salespeople";

Proc Print data=one;
run;

 %end;

title "";
%mend addcode;

DATA SETS SALES
bob CT 2
sue MA 3
ed MA 1

SYMGET/RESOLVE

CALL SYMPUT

%INCLUDE

CALL EXECUTE

W T
o o
r k
d e
 n
S
c R
a o
n u
n t
e e
r r

WORD
QUEUE EXECUTE

(SAS EXECUTION)
COMPILER
(SAS COMPILATION)

Compile

Assign

Execute

Resolve

DATA VECTOR

INPUT BUFFER

MULTI COMPONENT
MACRO PROCESSOR

(Scanner, Tokenizer,
Stack)

How Does Quoting Work?

AUTOMATIC SYSLAST WORK.SALES
Global sumsales 26
Global whosold 8

Compile the macro

MACRO PROCESSOR

%macro addcode2;
%if &sumsales GT 50 %then
 %str(t i t le " good sales" ;

proc f req data =one ;
t ables st at e ;

 weight sales ;
run ;) ;

%else
 %str(t i t le " problem w i t h low sales level " ;
 proc sort data =one ;
 by state name ;
 proc pr i nt dat a =one ;
 var state name sales ;
 run ;
) ;

%mend addcode2;

Use %str()
on all the

semicolons

the code
we submit
has %str

FIGURE 22

Figure 21 shows the rule “The Macro Compiler thinks the first semicolon ends a %if %then statement”. The first
semicolon after the %if is an instruction to the Macro Processor, as it Macro Compiles the tokens. The macro in
Figure 21 will not compile because the %Else %If %Then statement ends with the first semicolon. The bracketed
code in Figure 21 (near the box saying “the macro will not compile”) will be interpreted as NON-macro code stuck in
the middle of a macro and the Macro Compiler can not handle this situation. One simple solution is to use %if %then
%do %end, as shown in Figure 21. Alternatively, the semicolons between the %do %end are considered as text, not
instructions. The type of problem, shown in the %else %if in Figure 21, can also be fixed by the use of the %Str
function as is shown in Figure 22. In Figure 22 the %Str masks the semicolons on Macro Compilation and the first
semicolon seen by the macro processor is the one in the yellow circle.

The author suggests that the rules for tokens coming out of the catalog are best illustrated in two complicated slides.
It is difficult to explain the actions of the macro processor without knowledge of the system. Accordingly, the slides
show the values in the Symbol Table, the command that was run (before compilation) and how the macro processor
resolves the command. As support for the interpretation given in this paper, the log is included in the upper right
hand corner and the log shows all steps. The creation of the values in the Symbol Table is not shown in this paper.

In Figures 23 and 24 we see the steps of a simple test of the %if logic in Macro Execution. Because of the inability to
animate steps in a process in a paper, input to the Macro Catalog and output from the Macro Catalog are both shown
in the macro Processor box. The upper line of the code is input. It is shown with an arrow pointing to the right,
indicating that this is the code is sent to the catalog.

%if &Sco1 EQ %Str(G+W) %then Stands for the simple test code that
was sent to the Macro Catalog.
Full code is shown to right.

%if &Sco1 EQ %Str(G+W)
%then %do; %put It was TRUE ; %end;
 %else %put FALSE;

%if G + W EQ G + W
%then

Stands for the if statement that was
retrieved from the Macro Catalog
after Macro Resolution

What is stored in the Macro Catalog is: %if &Sco1 EQ G W %then - the result of the masking. This code is
returned to the macro processor and undergoes a three-step process of evaluation. The Macro Processor processes
the statement from “inside out” and passes results up to the next step of evaluation. The lower if statement, in the
Macro Processor, shows how the macro was evaluated.

14

WORD
QUEUEDATA SET

MACRO CATALOG

Compile

Assign

Execute

Resolve

DATA VECTOR

INPUT BUFFER

SYMGET/RESOLVE

CALL SYMPUT

%INCLUDE

CALL EXECUTE

W T
o o
r k
d e
 n
S
c R
a o
n u
n t
e e
r r

MULTI COMPONENT MACRO PROCESSOR
(Scanner, Tokenizer, Stack)

--> %if &Sco1 EQ %STR(G+W) %then-->

%macro Str_c;

Assign

Warning message but unquoted

SAS LOG
Macro variable SCO1 resolves to G+W
Some characters in the above value which
were subject to macro quoting have been
 unquoted for printing.

%IF condition &Sco1 EQ G W
is TRUE

MLOGIC(INTO_A): %PUT It was TRUE

Compile:Str , NRstr

Exeute:Quote, NRQuote
 Bquote, NrBQuote
 Superq

Execute
Execute

Uneval =PEG&I I =3 PA = FIRST
FIRST = SECOND SECOND = THIRD THIRD = FINAL
ONE = &TWO TWO = &THREE THREE = &FOUR
STATE1 = DE STATE2 = OR STATE3 = PA

 Sco1= G+W Sco2= AND Sco3= Peg3
 Sco4= Sco5= B&J Sco6=

%str()If the token is correctly
masked in the table, It

does not need to be
masked again

%if &Sco1 EQ G+W %thenG+W

The + in &Sco1 was masked at
assignment. The + is stored in
“masked format”. The + is not
unmasked when it is resolved
by the %if.

Empty Local
Environment

FIGURE 23
WORD
QUEUEDATA SET

MACRO CATALOG

Compile

Assign

Execute

Resolve

DATA VECTOR

INPUT BUFFER

SYMGET/RESOLVE

CALL SYMPUT

%INCLUDE

CALL EXECUTE

W T
o o
r k
d e
 n
S
c R
a o
n u
n t
e e
r r

MULTI COMPONENT MACRO PROCESSOR
(Scanner, Tokenizer, Stack)

%if &NRSco3 EQ PEG3 %then-->

%macro NRS_A;

Assign

Warning message but unquoted

SAS LOG
**NRstr WILL WORK OK FOR TEXT BUT NOT
FOR MACRO REFERENCES;

Macro variable NRSCO3 resolves to PEG&I

%IF condition &NRSco3 EQ PEG3
 is FALSE

Compile:Str , NRstr

Exeute:Quote, NRQuote
 Bquote, NrBQuote
 Superq

Execute
Execute

Uneval =PEG&I I =3 PA = FIRST
FIRST = SECOND SECOND = THIRD THIRD = FINAL
ONE = &TWO TWO = &THREE THREE = &FOUR
STATE1 = DE STATE2 = OR STATE3 = PA

 NRSco1= G + W NRSco2= AND NRSco3= Peg & I
 NRSco4= NRSco5= B & J NRSco6=

%NRstr()

NRSTR() masked the & in
NRSco3

on compilaton
and it never was unmasked.

Masked % and & tokens are
not resolved in the %if and
the macro reference stays

as &I.

%if &NRSco3 EQ PEG3 %thenPeg & I

Empty Local
Environment

 FIGURE 24
The first step is resolution of unmasked macro references. Note how the &sco1 was evaluated in Fig. 23 and
&NRSco3 was Resolved in Fig.24. This step can have many sub-steps as &&s delay the resolution of macros. Note,
as is shown in Fig. 23/24, the macro being Resolved can contain masked figures after all resolution step are
completed.

The second step happens after all macro references are Resolved, and is the processing of macro functions. If the
code contained %if %upcase(&Sco1) EQ %Str(G+W) the %upcase would be evaluated after all macro
references (the & stuff) had been Resolved. (no example given here.) The third step is the actual evaluation of the
truth, or falseness, of the %if statement. The Log shows this result. These rules can be checked by examining the
logs in Figures 23 and 24.

15

7A) THE EFFECT OF %STR ON TOKENS GOING INTO, AND TOKENS COMING OUT OF, THE MACRO CATALOG

Earlier on, Figure 22 showed the use of the %Str function to mask commas following a %if %then. Figure 25 shows
an enlarged Macro Catalog after compiling the macro shown in Figures 21 and 22.

DATA SETS SALES
bob CT 2
sue MA 3
ed MA 1

SYMGET/RESOLVE

CALL SYMPUT

%INCLUDE

CALL EXECUTE

W T
o o
r k
d e
 n
S
c R
a o
n u
n t
e e
r r

WORD
QUEUE EXECUTE

(SAS EXECUTION)
COMPILER
(SAS COMPILATION)

Compile

Assign

Execute

Resolve

DATA VECTOR

INPUT BUFFER

MULTI COMPONENT
MACRO PROCESSOR

(Scanner, Tokenizer,
Stack)

How Does Quoting Work?

AUTOMATIC SYSLAST WORK.SALES
Global sumsales 26
Global whosold 8

The Compiled macro

MACRO CATALOG

%macro addcode2;
%if &sumsales GT 50 %then
 %str(title "good sales" ;
 proc freq data = one ;
 tables state ;
 weight sales ;
 run ;) ;;

%else
 %str(title "problem with low sales level" ;
 proc sort data =one ;
 by state name ;
 proc print data =one ;
 var state name sales ;
 run ; ;
) ;

%mend addcode2;

No %str in
catalog after
CompilationNothing happens to

the &sumsales on
compilation.

& and % are NOT
evaluated on
compilation.

FIGURE 25

INPUT STACK

t i t le " good sales" ;
proc freq dat a = one ;
tables state ;
w eight sales ;
run ;)

MACRO CATALOG

MACRO TABLES

Sysdate=01JAN01
GLOBAL:month=jan

SYMGET/RESOLVE

CALL SYMPUT

%INCLUDE

CALL EXECUTE

DATA VECTOR
W T
o o
r k
d e
 n
S
c R
a o
n u
n t
e e
r r

INPUT BUFFER

WORD
QUEUE COMPILER

(SAS COMPILATION)
EXECUTE
(SAS EXECUTION)

DATA SET

Compile

Assign

Execute

Resolve

MULTI COMPONENT
MACRO PROCESSOR

(Scanner, Tokenizer,
Stack)

FIGURE 26

On the input stack (Figure21), the %Str can be seen but the %Str token is not stored in the catalog (see Figure 25).
%Str and %NRStr have their effect as tokens go into storage areas. What is stored, in the storage areas, is the
tokens after %Str and %NRStr have done their work (see Figure 25). Note that the tokens ; and = are all masked.
Also note the leading and trailing rectangles that indicate to SAS what type of masking was performed.

It is suggested that if the macro Addcode2 were executed, the tokens would not unmasked as they pass through the
Macro Processor on their way to the Input Stack. It would follow that if &sumsales were greater than 50, the text put
on the Input Stack would look like that shown in Figure 26 and that the masking would be removed by the automatic
unmasking barrier in the Word Queue.

7B) THE EFFECT OF %NRSTR ON TOKENS GOING INTO, AND TOKENS COMING OUT OF, THE MACRO CATALOG

INPUT STACK
%let S= F ;

%macro not_res;
proc print data=sashelp.class;
 title "for Sex =%NRSTR(&S)";

 where sex="%NRSTR(&S)";
 run;
%mend not_res;

%not_res;

%unquote(%not_res);

MACRO CATALOG

%macro not_res;
proc print
data=sashelp.class;
 title "for Sex = &S ";

where sex =” &S ” ;

 run;
%mend not_res;

MACRO TABLES

Sysdate=01JAN01

GLOBAL:
 S= F

SYMGET/RESOLVE

CALL SYMPUT

%INCLUDE

CALL EXECUTE

DATA VECTOR
W T
o o
r k
d e
 n
S
c R
a o
n u
n t
e e
r r

INPUT BUFFER

WORD
QUEUE COMPILER

(SAS COMPILATION)
EXECUTE
(SAS EXECUTION)

DATA SET

Compile

Assign

Execute

Resolve

MULTI COMPONENT
MACRO PROCESSOR

(Scanner, Tokenizer,
Stack)

16

Figure 27

INPUT STACK

proc print data=sashelp.class;
 title "for Sex = &S ";

where sex =” &S ” ;

 run;

%unquote(%not_res);

MACRO CATALOG

%macro not_res;
proc print
data=sashelp.class;
 title "for Sex = &S ";

where sex =” &S ” ;

 run;
%mend not_res;

MACRO TABLES

Sysdate=01JAN01

GLOBAL:
 S= F

SYMGET/RESOLVE

CALL SYMPUT

%INCLUDE

CALL EXECUTE

DATA VECTOR
W T
o o
r k
d e
 n
S
c R
a o
n u
n t
e e
r r

INPUT BUFFER

WORD
QUEUE COMPILER

(SAS COMPILATION)
EXECUTE
(SAS EXECUTION)

DATA SET

Compile

Assign

Execute

Resolve

MULTI COMPONENT
MACRO PROCESSOR

(Scanner, Tokenizer,
Stack)

FIGURE 28

The effect of the %NRStr in a % If statement is illustrated in Figure 23. Figure 27 shows the effect of the %NRStr on
macro invocations in code. The %NRStr masks the ampersands on compilation. This is a bit of overkill since one
does not need to mask an & on Macro Compilation. An & is not Resolved as it goes into the Macro Catalog.

In Figure 28 we see taht when the macro executes, the masked tokens are be put on the input stack and not
unmasked until the macro unmasking barrier. This causes a problem. The %unquote, working it’s way up the input
stack would allow the ampersands to Resolve and is explained below.

For a program to function, the programmer might need tokens to be “in a masked condition” as the tokens come out
of the Macro Catalog. Manuals say execution functions mask as tokens flow out of storage, and could therefore be
used in this situation. However, the programmer might still decide to use a use %Str or %NRStr and mask the tokens
as they flow into the catalog. If the tokens at masked as they are put into storage, they will be masked as they come
out. If the tokens are masked as they are put into the storage they will not need a masking on Macro
Execution/Resolution. It can be programmer preference to mask as tokens go into or out of storage (Figure 27).

7C) MANUAL UNMASKING
When the macro in Figure 28 executes, the ampersands remain masked as they come out of the Macro Catalog.
They are not evaluated on passing through the Macro Processor. Ampersands are put on the input stack with
masking intact, as can be seen in Figure 28. When the tokens flow through the WS/TR the masked ampersands do
not trigger any rules in the WS/TR. They are put on the Word Queue and the ampersands are unmasked at the
Automatic Unmasking Barrier. The SAS Compiler has no facility for resolving macro variables and the ampersands
are passed on to SAS Execution. The Where clause passed on to the compiler and execute modes is:

where upcase(sex)="&Sex";

This is syntactically valid and while it produces no notes, warnings or errors; it also produces no observations as
shown below.

NOTE: No observations were selected from data set SASHELP.CLASS.
NOTE: There were 0 observations read from the data set SASHELP.CLASS.
 WHERE UPCASE(sex)='&S';

17

INPUT STACK

proc print data=sashelp.class;
 title "for Sex = &S ";

where sex =” &S ” ;

 run;

%unquote(%not_res);

MACRO CATALOG

%macro not_res;
proc print
data=sashelp.class;
 title "for Sex = &S ";

where sex =” &S ” ;

 run;
%mend not_res;

MACRO TABLES

Sysdate=01JAN01

GLOBAL:
 S= F

SYMGET/RESOLVE

CALL SYMPUT

%INCLUDE

CALL EXECUTE

DATA VECTOR
W T
o o
r k
d e
 n
S
c R
a o
n u
n t
e e
r r

INPUT BUFFER

WORD
QUEUE COMPILER

(SAS COMPILATION)
EXECUTE
(SAS EXECUTION)

DATA SET

Compile

Assign

Execute

Resolve

MULTI COMPONENT
MACRO PROCESSOR

(Scanner, Tokenizer,
Stack)

FIGURE 29

INPUT STACK

proc print data=sashelp.class;
 title "for Sex = &S ";

where sex =” &S ” ;

 run;
)

MACRO CATALOG

%macro not_res;
proc print
data=sashelp.class;
 title "for Sex = &S ";

where sex =” &S ” ;

 run;
%mend not_res;

MACRO TABLES

Sysdate=01JAN01

GLOBAL:
 S= F

SYMGET/RESOLVE

CALL SYMPUT

%INCLUDE

CALL EXECUTE

DATA VECTOR
W T
o o
r k
d e
 n
S
c R
a o
n u
n t
e e
r r

INPUT BUFFER

WORD
QUEUE COMPILER

(SAS COMPILATION)
EXECUTE
(SAS EXECUTION)

DATA SET

Compile

Assign

Execute

Resolve

MULTI COMPONENT
MACRO PROCESSOR

(Scanner, Tokenizer,
Stack)

%unquote

 (%not_res)

FIGURE 30

If the macro were called with the statement
%unquote(%not_res);
(shown working up the input stack in Figures 27 – 29 and evaluating in Figure 30) the results are different.

18

INPUT STACK

&S ";

where sex =” &S ” ;

 run;
)

MACRO CATALOG

%macro not_res;
proc print
data=sashelp.class;
 title "for Sex = &S ";

where sex =” &S ” ;

 run;
%mend not_res;

MACRO TABLES

Sysdate=01JAN01

GLOBAL:
 S= F

SYMGET/RESOLVE

CALL SYMPUT

%INCLUDE

CALL EXECUTE

DATA VECTOR
W T
o o
r k
d e
 n
S
c R
a o
n u
n t
e e
r r

INPUT BUFFER

WORD
QUEUE

pr in t
data
=

sashelp.class

;
title

COMPILER
(SAS COMPILATION)

proc print
data=sashelp.cl
ass;
 title

EXECUTE
(SAS EXECUTION)

DATA SET

Compile

Assign

Execute

Resolve

MULTI COMPONENT
MACRO PROCESSOR

(Scanner, Tokenizer,
Stack)

“ for sex =

&S

FIGURE 31

The macro evaluates and results are shown. It is
suggested that the following process happens.

The %unquote function is read by the WS/TR and
passed to the Macro Processor where it is held in a
stack pending execution.

It is proposed that un-quoting is a Macro Processor
capability that happens inside the Macro Processor as
tokens move towards the Input Stack, as is shown in
Figure 28. Tokens are returned from the Macro
Catalog in between the parenthesis of the %unquote
function- which then executes inside the Macro
Processor

Unmasked tokens are put on the Input Stack and
processed normally. When a macro trigger reaches the
top of the Input Stack (Figure 29) it is passed to the
Macro Processor for resolution.

CONCLUSION
It is thought that the Map of the SAS system is a useful method for explaining the complex SAS macro process.

REFERENCES
It is suggested that interested readers study the books by Aster, Carpenter, and Berlew.

Lavery, Anbari & Nsereko (2002), “An Animated Guide, The Map of the SAS Macro System” In the Proceedings of
the 15th North East SAS Users Group Conference, 220-228

ACKNOWLEDGMENTS
Special thanks must go to Dr. Ian Whitlock for time spent reviewing this and for his help to the SAS community. Additional thanks
go to the authors of the many excellent SAS books on macros and to personnel of SAS institute.

CONTACT
Your comments and questions are valued and encouraged. Contact the author at:

Russell Lavery Contractor for Numeric Resources
Ardmore, PA 19003,
Email: russ.lavery@verizon.net

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS
Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

Performance_efficiency.sas
Subqueries and Efficiency

Use the MAX function in a subquery instead of the ALL keyword before the subquery. For example, the following queries produce the same result, but the second query is more efficient:

 proc sql;
 select * from proclib.payroll
 where salary> all(select salary
 from proclib.payroll
 where jobcode='ME3');

 proc sql;
 select * from proclib.payroll
 where salary> (select max(salary)
 from proclib.payroll
 where jobcode='ME3');
With subqueries, use IN instead of EXISTS when possible. For example, the following queries produce the same result, but the second query is usually more efficient:

proc sql;
 select *
 from proclib.payroll p
 where exists (select *
 from staff s
 where p.idnum=s.idnum
 and state='CT');

proc sql;
 select *
 from proclib.payroll
 where idnum in (select idnum
 from staff
 where state='CT');

Reflexive_joins.sas
/**
Section __: Reduce the number of obs in the data set: the slide is crowded
***/
proc SQl;
create table employees
 (empno num
 ,job char(15)
 ,name char(15)
 , Supervisor num
);
insert into employees
values(1,"1_Pres","Goodnight",.)
values(4,"2_V.P. Sales","Kurd",1)
values(6,"2_V.P. R&D","Church",1)
values(8,"2_CFO","Lee",1)
values(14,"3_Salesman","Wang",4)
values(18,"3_Salesman","Rama",4)
values(26,"3_Chemist","Levin",6)
values(28,"3_Metalurgist","Klien",6)
values(31,"3_Acntg. Mgr","Dowd",8)
values(36,"3_ Acntg. Mgr","Shu",8)
;
;

Select e. empno, e.job, e.name, R.name as supervisor, r.job as supv_job

from employees as e
 inner join
 employees as R
 on e.supervisor=r.empno
order by supv_job;

proc SQl;
create table Flights
 (origin Char(3)
 ,flight num
 ,Destination char(3)
 ,time num);
insert into flights
values("SFO",111,"CHI",240) /*Chicago FSS*/
values("LAX",111,"CHI",210) /*Chicago FSS*/
values("LAX",121,"NOH",220) /*O'hare*/
values("LAX",131,"CAK",266) /*Akron */
values("CHI",241,"PHL",145)
values("NOH",201,"PHL",167)
values("CAK",201,"PHL",145)
values("CAK",201,"EWK",145)
;

options nocenter;
proc SQL;
/*create table routes as*/
select wc.origin as WCStart , wc.flight as WCFlight ,wc.time as WCTime ,wc.Destination as WCEnd, "->" as spacer label="#"
 ,ec.origin as ReStart ,ec.flight as ECFlight ,ec.time as ECTime ,ec.Destination as ECEnd, (ec.time+wc.time) as TotalTime
 from flights as wc
 inner join
 flights as ec
 on wc.Destination=ec.origin and WC.origin="LAX" and EC.Destination="PHL"
 order by totalTime desc;

Select_line_Function_Techniques.sas

Section __: Reduce the number of obs in the data set: the slide is crowded
***/
data MyClass;
set SAShelp.class;
if mod(_N_,7) in (0,1,2,4,6,7) ;
label Name="Student name";
run;

/**
Section __: counting percenatges of age-sex as percent of sex - counts
***/
Proc SQL;
select "There are", count(*) format=2.0, "students with gender= ",sex, " in the table"
from Myclass;
group by sex;

****;
Proc SQL;
select sum(sex="M") as Males 	
		,sum(sex="F") as Females 		
 ,sum(age in(14,15)) as older_kids
from MyClass;
run;

****;
OPTIONS NOCENTER;
Proc SQL _METHOD _TREE;
select COUNT(DISTINCT(SEX)) AS SEXES_IN_TABLE
from MyClass;
QUIT;

*******QC an obs with a where *********************;
Proc SQL InObs=3;
select * from MyClass
where sex="F";
quit;

************ data step functions ************************;
Proc SQL;
select *
from MyClass(drop= age--weight);
run;

Proc SQL;
select *
from MyClass(drop= a: w: H:);
run;

Send_to_Excel_w_libname.sas
/**
Section __: Reduce the number of obs in the data set: the slide is crowded
***/
data MyClass;
set SAShelp.class;
if mod(_N_,7) in (0,1,2,4,6,7) ;
label Name="Student name";
run;

/**
Section __: counting percenatges of age-sex as percent of sex - counts
***/
libname TempFl Excel "C:\temp\Right2Excel.XLS";

Proc SQL;
create table TempFl.MyClass as
select * from MyClass;
quit;

libname TempFl ;

Shift_table_SQL.sas
*Shift table part 1 Creation of (a very small) master table using SQL;

proc SQL;
create table labs
(subjid char(3)
 ,test char(3)
 ,visit num
 ,value num
 ,decode char(8)
);
insert into labs
values("001","FFS",1 ,. ,"Missing ") /*FFs= Fehrer Freckle Scale*/
values("001","FFS",1.2 ,4 ,"Severe ")
values("002","FFS",1 ,2 ,"Moderate")
values("003","FFS",1 ,3 ,"Many ")
values("004","FFS",1 ,4 ,"Severe ")
values("001","FFS",9 ,2 ,"Moderate") /*FFs= Fehrer Freckle Scale*/
values("002","FFS",9 ,. ,"Missing ")
values("002","FFS",9.2 ,2 ,"Moderate")
values("003","FFS",9 ,0 ,"Normal ")
values("004","FFS",9 ,2 ,"Moderate")
;

Proc SQL;
create table MasterTbl as
select FU_val-Base_Val as diff
 	,coalesce(Baseline.subjid,FU.subjid) as subjid
		,coalesce(Baseline.Test,FU.Test) as test
		,Baseline.Base_visit,Baseline.Base_Val, Baseline.Base_Decode
		,FU.FU_visit,FU.FU_Val, FU.FU_Decode
from
 (select subjid, test, visit as Base_visit, value as Base_Val, decode as Base_Decode
 from labs
 where 1 <= Base_visit < 2
 group by subjid
 having Base_visit =max(Base_visit)
) as Baseline
full join
 (select subjid, test, visit as FU_visit , value as FU_Val, decode as FU_Decode
 from labs
 where 9 <= FU_visit < 10
 group by subjid
 having FU_visit =max(FU_visit)
) as FU
 on Baseline.subjid= FU.subjid and Baseline.test= FU.test;

 proc print data=MasterTbl;
 run;

/**
Section __:

There is a Disconnect here!!!!
The example above does not mathc the example belwo- they are independent.

***/

/***
* USER ID: MYSELF
* FILE ID: Shift_table_SQL.SAS
* USER NAME: RML (russ@russ-lavery.com)
* DRUG NAME:
* PROTOCOL:

* WIN NUMBER:
* DATE START: 28-Sep-2004
* DATE COMPLETE: 28-Sep-2004
* LAST MODIFIED:
* INPUT DATASET: INTERNAL
* OUTPUT DATASET:
* DESCRIPTION: This shows one way to do a Shift (Before-after) (from-to) table.
* It is A CROSSOVER STUDY, to make things more complex;
* Not shown , is the creation of the data set combined- this might be complex.
* Combined contains all the logic of the problem as implemented as flag variables.
* The study structure is:
 randomization - baseline1 measurement - period 1 treatments - end1 measurement
 washout period
 baseline 2 measurement - period 2 treatments- end2 measurement
 flags are:
 Safety 1 =did the person get dosed in period 1? if No, client says not in safety;
 Safety 2 =did the person get dosed in period 2? if No, client says not in safety;
 Baseline1 End1 Baseline2 End2 = some physical measurement at Low, Nrml and High
 Treat1 and Treat2 are the treatments for periods 1 and 2 and corresrpond to sequence.
 Finish1 and Finish2 tell if the subject finished all treatments in the period.
 Client says we do not report on subject for periods where finish= N.
***/
%let pgmNme=Shift_table_SQL.SAS;
data Combined;
/*make a data set of the from-to information.
 One line per "countable thing- thing can be person or or period*/
infile datalines missover firstobs=2;
input @1 subj $char2.
 @5 sex $char1.
 @9 treat $char2.
 @17 Safety1 $char1.
 @25 Baseline1 $char4.
 @35 end1 $char4.
 @42 Finish1 $char1.
 @51 Treat1 $char1.
 @62 Safety2 $char1.
 @70 Baseline2 $char4.
 @78 end2 $char4.
 @85 Finish2 $char1.
 @93 Treat2 $char1.;
If treat ="AP" then
 do; /* make a column of treatment and active*/
 Base_act=baseline1;
 end_act =end1;
 Finish_act=finish1;
 Safety_act=safety1;
 Base_Plac=baseline2;
 end_Plac =end2;
 Finish_Plac=finish2;
 Safety_Plac=safety2;
 end;
Else If treat ="PA" then
 do;
 Base_act=baseline2;
 end_act =end2;
 Finish_act=finish2;
 Safety_act=safety2;
 Base_Plac=baseline1;
 end_Plac =end1;
 Finish_Plac=finish1;
 Safety_Plac=safety1;
 end;
else Put "bad treat code";
LABEL SAFETY1 ="DID SUBJ GET ANY TREATMENT IN PERIOD1";
LABEL SAFETY2 ="DID SUBJ GET ANY TREATMENT IN PERIOD1";
LABEL BASELINE1="LEVEL AT START OF PERIOD 1";
LABEL BASELINE2="LEVEL AT START OF PERIOD 2";
LABEL END1 ="LEVEL AT END OF PERIOD 1";
LABEL END2 ="LEVEL AT END OF PERIOD 2";
LABEL Finish1 ="DID SUBJ FINISH ALL TX IN PERIOD1";
LABEL Finish2 ="DID SUBJ FINISH ALL TX IN PERIOD2";
LABEL TREAT1 ="DRUG RECEIVED IN PERIOD1";
LABEL TREAT2 ="DRUG RECEIVED IN PERIOD2";
LABEL TREAT ="ACTIVE-PLACEBO SEQUENCE: AP OR PA";
*The data below would be created by merging several panels;
*One value of creating the dataset below is it allows for easy QC. Everything is in one place;
*Printing and tabulating this dataset is like a SUPER-listing of the data;
*AS CAN BE SEEN BELOW- THE DATA CAN BE COMPLEX AND DIFFICULT TO QC IS USING SEVERAL SOURCES;
datalines;
Sub sex treat Safety1 baseline1 end1 Finish1 treat1 safety2 baseline2 end2 finish2 treat2
01 M AP Y LOW HIGH Y A Y NRML HIGH Y P
02 F AP Y NRML LOW Y A Y LOW HIGH Y P
03 M AP Y LOW LOW Y A *NO 2 * N P
04 F PA Y NRML LOW Y P Y LOW NRML Y A
05 M PA Y LOW N P * BACK * Y HIGH NRML Y A
06 F PA Y HIGH HIGH Y P Y NRML LOW Y A
07 M PA N LOW LOW Y P *LEFT 2* Y NRML N A
08 F AP Y LOW NRML Y A Y LOW NRML Y P
09 M PA Y NRML LOW Y P Y NRML LOW Y A
10 F AP Y HIGH N A *LEFT 1*
;
run;

OPTIONS NOCENTER PS=100;
PROC TABULATE DATA=COMBINED MISSING FORMAT=4.;
TITLE "THIS SHOWS ALL CLASS. VARS. ON ALL SUBJECTS - ANWSERS ARE HERE ...BUT HARD TO READ";
CLASS TREAT TREAT1 TREAT2 BASELINE1 SAFETY1 FINISH1 BASELINE2 SAFETY2 FINISH2 END1 END2;
TABLE TREAT*TREAT1*BASELINE1*SAFETY1*FINISH1 ALL
 TREAT*TREAT2*BASELINE2*SAFETY2*FINISH2 ALL
 ,END1 ALL END2 ALL/RTS=60;RUN;
/***/
* get counts of qualified subjects (safety=yes and completed=yes) into macro variables;
data look (keep= treat safety1 safety2 finish1 finish2 all_act all_plac ap_act ap_plac pa_plac pa_act);
set COMBINED end=EOF;
if /*sub was active in period 1 or 2, if subj finished the period, count towards active pats*/
(Treat="AP" and (Safety1="Y" and Finish1="Y")) OR (Treat="PA" and (Safety2="Y" and Finish2="Y")) then all_act+1;
if /*sub was placebo in period 1 or 2, if subj finished the period, count towards placebo pats*/
(Treat="AP" and (Safety2="Y" and Finish2="Y")) OR (Treat="PA" and (Safety1="Y" and Finish1="Y")) then all_Plac+1;

if (Treat="AP" and (Safety1="Y" and Finish1="Y")) then AP_act+1; /*count this subject AP patterna and finished active*/
if (Treat="AP" and (Safety2="Y" and Finish2="Y")) then AP_Plac+1;/*count this subject AP patterna and finished Placebo*/

if (Treat="PA" and (Safety1="Y" and Finish1="Y")) then PA_Plac+1; /*See above*/
if (Treat="PA" and (Safety2="Y" and Finish2="Y")) then PA_Act+1; /*See above*/

if EOF then
 do; /*load values into macro vars for use in headers*/
 call symput("all_act", trim(left(put(all_act,3.))));
 call symput("all_Plac",trim(left(put(all_Plac,3.))));
 call symput("AP_act", trim(left(put(AP_act,3.))));
 call symput("AP_Plac", trim(left(put(AP_Plac,3.))));
 call symput("PA_act", trim(left(put(PA_act,3.))));
 call symput("PA_Plac", trim(left(put(PA_Plac,3.))));
 end;
run;

/**
*Divide the report into six sections. A typical section is shown below, and is easy to code.
*We will assemble sections towards the end of the program.
*Since "inside the sections must sum to 100%" and will have different Ns for each section
 - we use proc freqs for each section - not required taht we do so, but common
*since we have counts in macros, a sql would also work.
* think of assembling columns of data like:
 name FROMLNH ActiveL ActiveNML ActiveH PlaceboL PlaceboNML PlaceboH
 AB From Low X (XX.X) X (XX.X) X (XX.X) This would be
 From Nrml X (XX.X) X (XX.X) X (XX.X) another section
 From High X (XX.X) X (XX.X) X (XX.X)

***************** Shell Data set **
*since there is no assurance that every From -level will be in the data
 We use a shell to insure all "row" entreis are in the final data set;
* since we'll do a lot of merging - use col3 to col8 for var names (not activeL) ;
***/
data shell(sortedby= out_ord int_ord);
length Name $ 8. From_V $ 4 col3-col8 $12 ;
retain col3-col8 " 0 (00.0)";
infile datalines missover;
input @1 name $char9.
 @13 From_V $char4.
 @19 out_ord 1.
 @21 int_ord 1.;
datalines ;
ALL 1 0
ALL LOW 1 1
ALL NRML 1 2
ALL HIGH 1 3
ACT-PLAC 2 0
ACT-PLAC LOW 2 1
ACT-PLAC NRML 2 2
ACT-PLAC HIGH 2 3
PLAC-ACT 3 0
PLAC-ACT LOW 3 1
PLAC-ACT NRML 3 2
PLAC-ACT HIGH 3 3
;
run;

/*%let dsn=combined ;*/
/*%let out_nm=act_all ;*/
/*%let outorder=1 ;*/
/*%let base =Base_act ;*/
/*%let end =end_act ;*/
/*%let where =%str(where safety_act='Y' and finish_act='Y');*/
/*%let COMMENT=ALL Active ;*/
/*%let DENOM=&all_act ; */

%macro A_SQL(dsn=combined /* input data set*/
 ,out_nm =act_all /*name ouf output data set*/
 ,outorder=1 /*vertical order of this section on the page*/
 ,base =Base_act /* the from variables set*/
 ,end =end_act /* the ending variable */
 ,denom=&all_act
 ,where =where safety_act='Y' and finish_act='Y' /* logic for inclusion/exclusion*/
 ,COMMENT=ALL Active /* a reminder of why this structure*/
);

PROC SQL ;
create table &out_nm as
select &outorder as out_ord
 ,"&COMMENT" AS COMMENT
 ,"&WHERE" AS WHERE
 , &base. as from_v
 , &end. as to_v
 , put(count(*),3.0)||" ("||put((100*count(*)/&denom),4.1)||")" as col
 FROM &dsn
 &where
GROUP BY comment, out_ord, from_v, to_v
;
run;

proc transpose data=&out_nm
 out=&out_nm(drop=_name_)
 prefix=T_;
 var col;
 id to_v;
 by comment out_ord from_v;
run;
%mend A_SQL;

%put _user_;

options mlogic mprint symbolgen;
%A_SQL(dsn=combined /* input data set*/
 ,out_nm =act_all /*name ouf output data set*/
 ,outorder=1 /*vertical order of this section on the page*/
 ,base =Base_act /* the from variables set*/
 ,end =end_act /* the ending variable */
 ,denom=&all_act
 /*put the Y or N in single quotes*/
 ,where =%str(where safety_act='Y' and finish_act='Y') /* logic for inclusion/exclusion*/
 ,COMMENT=ALL Active /* a reminder of why this structure*/
);

options mlogic mprint symbolgen;
%A_SQL(dsn=combined /* input data set*/
 ,out_nm =plac_all /*name ouf output data set*/
 ,outorder=1 /*vertical order of this section on the page*/
 ,base =Base_plac /* the from variables set*/
 ,end =end_plac /* the ending variable */
 ,denom=&all_Plac
 /*put the Y or N in single quotes*/
 ,where =%str(where safety_plac='Y' and finish_plac='Y') /* logic for inclusion/exclusion*/
 ,COMMENT=ALL placebo /* a reminder of why this structure*/
);
/******/
%A_SQL(dsn=combined /* input data set*/
 ,out_nm =act_AP /*name ouf output data set*/
 ,outorder=2 /*vertical order of this section on the page*/
 ,base =Baseline1 /* the from variables set*/
 ,end =end1 /* the ending variable */
 ,denom=&AP_ACT
 /*put the treat, Y or N in single quotes*/
 ,where =%str(where treat='AP' and safety1='Y' and finish1='Y') /* logic for inclusion/exclusion*/
 ,COMMENT=AP Active /* a reminder of why this structure*/
);

%A_SQL(dsn=combined /* input data set*/
 ,out_nm =Plac_AP /*name ouf output data set*/
 ,outorder=2 /*vertical order of this section on the page*/
 ,base =Baseline2 /* the from variables set*/
 ,end =end2 /* the ending variable */
 ,denom=&AP_PLAC
 /*put the treat, Y or N in single quotes*/
 ,where =%str(where treat='AP' and safety2='Y' and finish2='Y') /* logic for inclusion/exclusion*/
 ,COMMENT=AP placebo /* a reminder of why this structure*/
);
/******/
%A_SQL(dsn=combined /* input data set*/
 ,out_nm =act_PA /*name ouf output data set*/
 ,outorder=3 /*vertical order of this section on the page*/
 ,base =Baseline2 /* the from variables set*/
 ,end =end2 /* the ending variable */
 ,denom=&PA_ACT
 /*put the treat, Y or N in single quotes*/
 ,where =%str(where treat='PA' and safety2='Y' and finish2='Y') /* logic for inclusion/exclusion*/
 ,COMMENT=PA Active /* a reminder of why this structure*/
);

%A_SQL(dsn=combined /* input data set*/
 ,out_nm =Plac_PA /*name ouf output data set*/
 ,outorder=3 /*vertical order of this section on the page*/
 ,base =Baseline1 /* the from variables set*/
 ,end =end1 /* the ending variable */
 ,denom=&PA_PLAC
 /*put the treat, Y or N in single quotes*/
 ,where =%str(where treat='PA' and safety1='Y' and finish1='Y') /* logic for inclusion/exclusion*/
 ,COMMENT=PA placebo /* a reminder of why this structure*/
);
 ;

*assemble the six sections;
data left3(keep=out_ord int_ord col3-col5); /*NOTE BELOW**/
set Act_all Act_AP Plac_PA ; /* odd sequences happen*/
 if from_V="LOW" then int_ord=1;
 else if from_V="NRML" then int_ord=2;
 else if from_V="HIGH" then int_ord=3;
 col3=T_low;
 col4=T_nrml;
 col5=T_high;
 ;
 run;
proc sort data=left3;
by out_ord int_ord;
run;

data right3(keep=out_ord int_ord col6-col8) ; /*NOTE BELOW**/
set Plac_all Plac_AP Act_PA ; /* odd sequences happen*/
 if from="LOW" then int_ord=1;
 else if from="NRML" then int_ord=2;
 else if from="HIGH" then int_ord=3;
 col6=T_low;
 col7=T_nrml;
 col8=T_high;
 ;
 run;
proc sort data=right3;
by out_ord int_ord;
run;

options ls=120 nocenter;
*Think of the output as a 3 by 2 matrix of reports;
*use SQL, and union, to assemble each of the columns (vertically), use SQL and joins to assemble columns - horizontally;
proc sql;/*Use union to Asse*/
create table left_3 as
select * from act_all
union all
select * from act_AP
union all
select * from Plac_PA
;
create table Right_3 as
select * from Plac_all
union all
select * from Plac_AP
union all
select * from Act_PA
run;
create table final as
select s.name, s.from_v, s.out_ord, s.int_ord
 ,coalesce(L.t_low ,s.col3) as ccol3
 ,coalesce(L.T_nrml ,s.col4) as ccol4
 ,coalesce(L.T_high ,s.col5) as ccol5
 ,coalesce(R.t_low ,s.col6) as ccol6
 ,coalesce(R.T_nrml ,s.col7) as ccol7
 ,coalesce(R.T_high ,s.col8) as ccol8
 from shell as s
 left join left_3 as L
 	on s.out_ord=L.out_ord and s.from_v=l.from_V
 left join Right_3 as R
 	on s.out_ord=R.out_ord and s.from_v=R.from_V
order by out_ord, int_ord;
quit;

options ls=110;
*use proc report to make the output pretty;
proc report data= final nowd noheader out=hope;
title "&pgmnme";
where int_ord NE 0;
columns Name From_v Ccol3 Ccol4 Ccol5 Ccol6 Ccol7 Ccol8;
 define Name /order order=data NOPRINT ; /*section order in report*/
 define From_v /order order=data ; /*internal order in section*/
 define Ccol3 / display "" ; /*name of the information*/
 define Ccol4 / display "";
 define Ccol5 / display "";
 define Ccol6 / display spacing=12 "" ;
 define Ccol7 / display "";
 define Ccol8 / display "";
 compute before name ;
 if name="ALL" then
 do;
 spanner =" All Subjects - Before or After Crossover" ;
 col_head=" Active Drug(N=&all_act) Placebo(N=&all_plac) "; end;
 Else if name="ACT-PLAC" then
 do;
 spanner=" AP Subjects - Before or After Crossover" ;
 col_head=" Active Drug(N=&AP_act) Placebo(N=&AP_plac) ";
 end;
 else if name="PLAC-ACT" then
 do;
 spanner=" PA Subjects - Before or After Crossover" ;
 col_head=" Placebo(N=&PA_Plac) Active(N=&PA_Act) ";
 end;
 Line @1 spanner $char105.;
 Line @1 col_head $char105.;
 Line @1 " To Low To Normal To High To Low To Normal To High ";
 Line @1 "From ___";
 endcomp name;

 compute AFTER name ;
 Line @1 " " ;
 Line @1 " " ;
 Line @1 " ";
 Line @1 " ";
 Line @1 " ";
 endcomp ;
 run;

SQL_COOL_EXAMPLES.sas
options nocenter;
proc print data=sashelp.class;
run;

data Group;
infile datalines truncover firstobs=2;
input @1 Group $char24. ;
datalines;
1234567890123456789012345678901234567890123456789012
G1- NO Group Statement*/
G2- Yes Group statement*/
;
run;

data having;
infile datalines truncover firstobs=2;
input @1 Having $char66. ;
datalines;
12345678901234567890123456789012345678901234567890123456
/*H1- NO having clause */
/*H2- having applied to Summary variable */
/*H3- having applied to Group variable */
/*H4- having applied to Group and Summary Variables */
/*H5- Having applied to Detail Data */
/*H6- Having applied to Summary and Detail Data */
/*H7- Having applied to Group and Detail Data */
/*H8- Having applied to Summary, Group and Detail Data*/
;
run;

data Select;
infile datalines truncover firstobs=2;
input @1 select $char63. ;
datalines;
123456789012345678901234567890123456789012345678901234567
/*S1-No variables in Select
/*S2-Select has: NO Detail - No Group - YES Summary
/*S3-Select has: NO Detail - YES Group - NO Summary
/*S4-Select has: NO Detail - YES Group - YES Summary
/*S5-Select has: YES Detail - No Group - No Summary
/*S6-Select has: YES Detail - No Group - YES Summary
/*S7-Select has: YES Detail - YES Group - No Summary
/*S8-Select has: YES Detail - YES Group - YES Summary
;
run;

data break;
infile datalines truncover firstobs=2;
input @1 break $char95. ;
datalines;
1234567890123456789012345678901234567890123456789012345678901234567890123456789012345
/**/
;
run;

options ps=300 nocenter ls=120;
/*Generate section headers to be used in program below*/
proc sql number;
select Break, select, group, having, break
from select, having, group, break;
quit;

/***
Section __: Use SQL to create the combination "Headers" that must be coded
 Cut and paste from SAS Listing back into program below
**/

data Group;
infile datalines truncover firstobs=2;
input @1 Group $char24. ;
datalines;
1234567890123456789012345678901234567890123456789012
G1- NO Group Statement*/
G2- Yes Group statement*/
;
run;

data having;
infile datalines truncover firstobs=2;
input @1 Having $char66. ;
datalines;
12345678901234567890123456789012345678901234567890123456
/*H1- NO having clause */
/*H2- having applied to Summary variable */
/*H3- having applied to Group variable */
/*H4- having applied to Group and Summary Variables */
/*H5- Having applied to Detail Data */
/*H6- Having applied to Summary and Detail Data */
/*H7- Having applied to Group and Detail Data */
/*H8- Having applied to Summary, Group and Detail Data*/
;
run;

data Select;
infile datalines truncover firstobs=2;
input @1 select $char63. ;
datalines;
123456789012345678901234567890123456789012345678901234567
/*S1-No variables in Select
/*S2-Select has: NO Detail - No Group - YES Summary
/*S3-Select has: NO Detail - YES Group - NO Summary
/*S4-Select has: NO Detail - YES Group - YES Summary
/*S5-Select has: YES Detail - No Group - No Summary
/*S6-Select has: YES Detail - No Group - YES Summary
/*S7-Select has: YES Detail - YES Group - No Summary
/*S8-Select has: YES Detail - YES Group - YES Summary
;
run;

data break;
infile datalines truncover firstobs=2;
input @1 break $char95. ;
datalines;
1234567890123456789012345678901234567890123456789012345678901234567890123456789012345
/**/
;
run;

options ps=300 nocenter ls=120;
/*Generate section headers to be used in program below*/
proc sql number;
select Break, select, group, having, break
from select, having, group, break;
quit;

**this query is just to create macro variables holding interesting characeristics;
*we will put these values into following queries- just so we do not have to remember numbers;
options ls=120 nocenter;
proc SQL _method _tree;
select left(put(sum(sex="F"),2.0)) as FemCount
	 ,left(put(sum(sex="M"),2.0)) as MaleCount
 ,avg(height) as overall_avg_height
 ,avg(age) as overall_avg_age
 ,sum(height*(sex="F"))/sum(sex="F") as FemAvgH
	 ,sum(height*(sex="M"))/sum(sex="M") as MaleAvgH
 ,sum(Age*(sex="F"))/sum(sex="F") as FemAvgAge
	 ,sum(Age*(sex="M"))/sum(sex="M") as MaleAvgAge
into :FemCount ,:MaleCount
 ,:Overall_avg_height ,:Overall_avg_age
 ,:FemAvgH ,:MaleAvgH
 ,:FemAvgAge ,:MaleAvgAge
 from SAShelp.class
;
%put _user_;
title1 "overall_avg_age=&overall_avg_age and overall_avg_height=&overall_avg_height";
title2 "FemAvgAge=&FemAvgAge and MaleAvgAge=&MaleAvgAge";
title3 "FemAvgH=&FemAvgH and MaleAvgH=&MaleAvgH";
title4 "FemCount=&FemCount and MaleCount=&MaleCount";

proc means data=sashelp.class;
var age height;
class sex;
run;
%put _user_;

**this supports the flowchart showing the sequence of SQL activities);
proc sql;
/*inclusion of a non-grouping variable (name) in the select causes display at detail level*/
/*the summaries are done by sex and are merged in by sex*/
title "The averages, and counts, are calculated by sex and merged back in by sex";
select name, sex, count(*) as Count_from_merge
 , avg(age) as avg_from_merge
 ,"&FemAvgAge" as MacroFemAvgAge , "&MaleAvgAge" as MacroMaleAvgAge
	,"&FemCount" as MacroFemCount , "&MaleCount" as MacroMaleCount
 from sashelp.class
group by sex;
run;

proc SQL;
title "AS a reminder, What are the average ages by sex ";
select sex, avg(age)
from sashelp.class group by sex;
run;

proc sql;
title1 "Select only contains grouping and summary variables";
title2 "We apply a filter in the having and apply it to a group variable";
title3 "The filtering happens late in the process";
title4 "One having returns zero obs because the avg in the having is by sex";
title5 "To check this toggle among the three versions of the having";
select sex, avg(age) as avg_from_having
 ,"&FemAvgAge" as FemAvgAge
 , "&MaleAvgAge" as MaleAvgAge
 , "&Overall_avg_age" as Overall_avg_age
 from sashelp.class
group by 1 /*Sex*/
/*having avg_from_having GT avg(age);*/
/*having avg_from_having GE avg(age);*/
having avg_from_having GE &Overall_avg_age;
run;

%macro skipme;
proc sql;
title "a way to do above without resorting to macro variable";
title2 "We apply a filter in the having and apply it to a group variable";
select sex, avg(age) as avg_from_having
 ,"&FemAvgAge" as FemAvgAge
 , "&MaleAvgAge" as MaleAvgAge
 , "&Overall_avg_age" as Overall_avg_age
 from sashelp.class
group by 1 /*Sex*/
having avg_from_having GE (select avg(age) from SAShelp.class);
quit;

%mend skipme;

proc sql;
title1 "Select contains only grouping variables";
select sex
From SAShelp.class
 group by sex;
run;

proc sql;
title1 "We have non-groping variables in select-shows detail data merged with summaries";
title2 "NOTE: Having DOES filter observation Level data! It happens late in the process";
title3 "The averages are averages for the whole data set";
title4 "data set averages were merged with detail data and then filtered on detail data";
select name, sex, avg(age) as avg_from_having_Filtered_merge
 ,"&FemAvgAge" as FemAvgAge , "&MaleAvgAge" as MaleAvgAge
 from sashelp.class
group by 2
having substr(name,1,1) NE "J";
run;

**uncorelated sub-query;
proc SQL _method _tree;
/*fails cause SQL can not find variable overall_avg_hgt form the where sub-query*/
select * , overall_avg_hgt from SAShelp.class
where height GT (select avg(height) as overall_avg_hgt from sashelp.class);

proc SQL _method _tree;
/*The subqery returs soeting like a constant- not a named variable*/
select * , avg(height) ,"&avgHeight" as macroHeight from SAShelp.class
where height GT (select avg(height) from sashelp.class);

***another non-correlated sub-query);
proc SQL _method _tree;
select * from sashelp.class as O
where O.name in (select name from SAShelp.class where sex="M");

/* 1 **/
/*S1-No variables in Select G1- NO Group Statement */
/*H1- NO having clause */
/**/
options NOCENTER ls=120 ps=40;
Proc SQL _method _tree;
FOOTNOTE "NO VARIABLES IN SELECT RETURNS A SYNTAX ERROR";
select
from sashelp.class as C;
run; /*whole data set is the group, One line through the grouping path*/
/*left in to prove that this generates a syntax Error*/
/*Must have variables in the select, Syntax Error not logical error*/

/* 2 **
/*S2-Select has: NO Detail - No Group - YES Summary G1- NO Group Statement */
/*H1- NO having clause */
/**/
proc SQL _method _tree;
title1 "overall_avg_height=&overall_avg_height";
title2 "FemAvgH=&FemAvgH and MaleAvgH=&MaleAvgH";
title3 "FemCount=&FemCount and MaleCount=&MaleCount";
footnote1 "We can tell, from the totals and averages produced by the query";
footnote2 "when in the process filters were applied to observations.";
footnote3 "Average, from query, equals overall average (see title), so no filters applied.";
select avg(height) as AvHt, Min(weight) as MinWt, max (height) as MaxHt
from sashelp.class as C;
run; /*whole data set is the group, One line through the grouping path*/
footnote "";
/* 3 **
/*S3-Select has: NO Detail - YES Group - NO Summary G1- NO Group Statement */
/*H1- NO having clause */
/**/
*can not have group in select and no grouping variable;

/* 4 **
/*S4-Select has: NO Detail - YES Group - YES Summary G1- NO Group Statement */
/*H1- NO having clause */
/**/
*can not have group in select and no grouping variablle;

/* 5 **
/*S5-Select has: YES Detail - No Group - No Summary G1- NO Group Statement */
/*H1- NO having clause */
/**/
proc SQL _method _tree;
footnote "all detail lines pass through detail path";
select name
from sashelp.class as C;
run;
footnote "";

/* 6 **
/*S6-Select has: YES Detail - No Group - YES Summary G1- NO Group Statement */
/*H1- NO having clause */
/**/
proc SQL _method _tree;
footnote "All detail lines go through detail path and one overall average goes through the summary path.";
footnote2 "support for the two path concept is in the note below:";
footnote3 "NOTE: The query requires remerging summary statistics back with the original data.";
select name, avg(age) as AvAge
from sashelp.class as C;
run; /*all detail lines through detail path
 and one overall average goes through the summary path */
 /*support for the two path concept is in the note below
 NOTE: The query requires remerging summary statistics back
 with the original data.*/
footnote "";

/* 7 **
/*S7-Select has: YES Detail - YES Group - No Summary G1- NO Group Statement */
/*H1- NO having clause */
/**/
*can not have group in select and no grouping variablle;

/* 8 **
/*S8-Select has: YES Detail - YES Group - YES Summary G1- NO Group Statement */
/*H1- NO having clause */
/**/
*can not have group in select and no grouping variablle;

/* 9 **
/*S1-No variables in Select G2- Yes Group Statement */
/*H1- NO having clause */
/**/
proc SQL _method _tree;
select
from sashelp.class as C
group by sex;
run; /*Code left in to prove that this generates a syntax Error*/

/* 10 **
/*S2-Select has: NO Detail - No Group - YES Summary G2- Yes Group Statement */
/*H1- NO having clause */
/**/
proc SQL _method _tree;
footnote1 "two lines, and two variables, go through the grouping path.";
footnote2 "sex is dropped late in the process and not not printed";
select avg(age) as AvAge
from sashelp.class as C
group by sex;
run;
Footnote1;

/* 11 **
/*S3-Select has: NO Detail - YES Group - NO Summary G2- Yes Group Statement */
/*H1- NO having clause */
/**/
proc SQL _method _tree;
footnote1 "Lists all the sex values, ordered by sex";
footnote2 "WARNING: A GROUP BY clause has been transformed into an ORDER BY clause ";
footnote3 "because neither the SELECT clause nor the optional HAVING clause of the associated ";
footnote4 "table-expression referenced a summary function. ";
select sex
from sashelp.class as C
group by sex;
run;
footnote "";

/* 12 **
/*S4-Select has: NO Detail - YES Group - YES Summary G2- Yes Group Statement */
/*H1- NO having clause */
/**/
proc SQL _method _tree;
footnote1 "Two obs through the grouping path, none through detail path. ";
footnote2 "Support for idea that all data goes through groping path is that there is ";
footnote3 "No note in the log that mentions a re-merging w/data afterwards";
select sex, avg(age) as AvgAge
from sashelp.class as C
group by sex;
run;
footnote "";

/* 13 **
/*S5-Select has: YES Detail - No Group - No Summary G2- Yes Group Statement */
/*H1- NO having clause */
/**/
proc SQL _method _tree;
footnote1 "Lists all Name values, ordered by sex - but does not print sex";
footnote2 "name & sex sent through detial path, file is sorted and sex is dropped";
footnote3 "WARNING: A GROUP BY clause has been transformed into an ORDER BY clause ";
footnote4 "because neither the SELECT clause nor the optional HAVING clause of the associated ";
footnote5 "table-expression referenced a summary function. ";
select name
from sashelp.class as C
group by sex;
run;
footnote "";

/* 14 **
/*S6-Select has: YES Detail - No Group - YES Summary G2- Yes Group Statement */
/*H1- NO having clause */
/**/
proc SQL _method _tree;
footnote1 "detail lines, plus grouping var (to allow merging), go through detail path";
footnote2 "two obs (and two vars- sex and AvgAge) go through grouping path. ";
footnote3 "After detail and grouping paths merged, the grouping var is dropped";
select name , avg(age)
from sashelp.class as C
group by sex;
run;
footnote "";

/* 15 **
/*S7-Select has: YES Detail - YES Group - No Summary G2- Yes Group Statement */
/*H1- NO having clause */
/**/
proc SQL _method _tree;
footnote1 "Lists all Name values and sex, ordered by sex ";
footnote2 "name & sex sent through detial path, file is sorted ";
footnote3 "WARNING: A GROUP BY clause has been transformed into an ORDER BY clause ";
footnote4 "because neither the SELECT clause nor the optional HAVING clause of the associated ";
footnote5 "table-expression referenced a summary function. ";
select name , sex
from sashelp.class as C
group by sex;
run;

/* 16 **
/*S8-Select has: YES Detail - YES Group - YES Summary G2- Yes Group Statement */
/*H1- NO having clause */
/**/
proc SQL _method _tree;
footnote1 "detail lines,plus grouping var, go through detail path";
footnote2 "two obs (Sex and AvgAve) go through grouping path.";
footnote3 "The detial and grouping files are merged, and grouping var NOT dropped";
select name , sex , avg(age) as AvgAge
from sashelp.class as C
group by sex;
run;
footnote "";

/* 17 **
/*S1-No variables in Select G1- NO Group Statement */
/*H2- having applied to Summary variable */
/**/
/*No variables in select produces syntax error*/

/* 18 **
/*S2-Select has: NO Detail - No Group - YES Summary G1- NO Group Statement */
/*H2- having applied to Summary variable */
/**/
proc SQL _method _tree;
footnote1 "Obs passes having test- Group path returns ONE observation";
footnote2 "one obs goes through grouping and filtering applied late";
select avg(height) as AvHgt
from sashelp.class as C
having AvHgt GT 62;
run;

proc SQL _method _tree;
footnote1 "Obs Fails having test- Group path returns ONE observation";
footnote2 "one obs goes through grouping and filtering applied late";
select avg(height) as AvHgt
from sashelp.class as C
having AvHgt GT 63;
quit;

/* 19 **
/*S3-Select has: NO Detail - YES Group - NO Summary G1- NO Group Statement */
/*H2- having applied to Summary variable */
/**/
 /*With NO summary,a having can not be applied to the summary*/

/* 20 **
/*S4-Select has: NO Detail - YES Group - YES Summary G1- NO Group Statement */
/*H2- having applied to Summary variable */
/**/
 /*Can not have group in select without a grouping var*/

/* 21 **
/*S5-Select has: YES Detail - No Group - No Summary G1- NO Group Statement */
/*H2- having applied to Summary variable */
/**/
 /*With NO summary,a having can not be applied to the summary*/

/* 22 **
/*S6-Select has: YES Detail - No Group - YES Summary G1- NO Group Statement */
/*H2- having applied to Summary variable */
/**/
proc SQL _method _tree;
footnote1 "All rows selected when comparison is to 62";
footnote2 "Sex for all obs sent through detail path, one obs sent through grouping";
footnote3 "overall average merged and the having is applied late in the process";
select sex, avg(height) as AvHgt
from sashelp.class as C
having AvHgt GT 62;/*True*/
run;

proc SQL _method _tree;
footnote1 "NO rows selected when comparison is to 63";
footnote2 "Sex for all obs sent through detail path, one obs sent through grouping";
footnote3 "overall average merged and the having is applied late in the process";
footnote4 "when having is applied it filters out all rows";
select sex, avg(height) as AvHgt
from sashelp.class as C
having AvHgt GT 63; /*False*/
quit;
footnote "";

/* 23 **
/*S7-Select has: YES Detail - YES Group - No Summary G1- NO Group Statement */
/*H2- having applied to Summary variable */
/**/
 /*With NO grouping statement ,can not have grouping var in select*/

/* 24 **
/*S8-Select has: YES Detail - YES Group - YES Summary G1- NO Group Statement */
/*H2- having applied to Summary variable */
/**/
/*With NO grouping statement ,can not have grouping var in select*/

/* 25 **
/*S1-No variables in Select G2- Yes Group Statement */
/*H2- having applied to Summary variable */
/**/
/*syntax error- must have some variable(s) in select clause*/

/* 26 **
/*S2-Select has: NO Detail - No Group - YES Summary G2- Yes Group Statement */
/*H2- having applied to Summary variable */
/**/
proc SQL _method _tree;
footnote1 "Both obs return True for AvHgt GT 60";
footnote2 "Two obs (TWO Variables) sent through grouping- having applied to the obs";
footnote3 "Sex is dropped late in the process";
select avg(height) as AvHgt
from sashelp.class as C
group by sex
having AvHgt GT 60;
run;

proc SQL _method _tree;
footnote1 "One obs return True for AvHgt GT 63";
footnote2 "Two obs (One Variable) sent through grouping- having applied to the obs";
select avg(height) as AvHgt
from sashelp.class as C
group by sex
having AvHgt GT 63;
run;

proc SQL _method _tree;
footnote1 "NO obs return True for AvHgt GT 64";
footnote2 "Two obs (One Variable) sent through grouping- having applied to the obs";
footnote3 "Sex is dropped late in the process";
select avg(height) as AvHgt
from sashelp.class as C
group by sex
having AvHgt GT 64;
quit;

/* 27 **
/*S3-Select has: NO Detail - YES Group - NO Summary G2- Yes Group Statement */
/*H2- having applied to Summary variable */
/**/
/*Can not apply filter to summary if the select does not have a summary*/

/* 28 **
/*S4-Select has: NO Detail - YES Group - YES Summary G2- Yes Group Statement */
/*H2- having applied to Summary variable */
/**/
proc SQL _method _tree;
footnote1 "both obs return True for: having AvHgt GT 60;";
footnote2 "Two obs (Two Variables) sent through grouping- having applied to the obs";
select sex, avg(height) as AvHgt
from sashelp.class as C
group by sex
having AvHgt GT 60;
run;

proc SQL _method _tree;
footnote1 "ONE obs return True for: having AvHgt GT 63;";
footnote2 "Two obs (Two Variables) sent through grouping- having applied to the obs";
select sex, avg(height) as AvHgt
from sashelp.class as C
group by sex
having AvHgt GT 63;/*One obs return True*/
run; /*Two obs (Two Variables) sent through grouping- having applied to the obs*/

proc SQL _method _tree;
footnote1 "NO obs return True for: having AvHgt GT 64;";
footnote2 "Two obs (Two Variables) sent through grouping- having applied to the obs";
select sex, avg(height) as AvHgt
from sashelp.class as C
group by sex
having AvHgt GT 64; /*Zero obs return True*/
quit; /*Two obs sent through grouping- having applied to two the obs*/

/* 29 **
/*S5-Select has: YES Detail - No Group - No Summary G2- Yes Group Statement */
/*H2- having applied to Summary variable */
/**/
/*If no summary in select, can not apply a hving to summary*/

/* 30 **
/*S6-Select has: YES Detail - No Group - YES Summary G2- Yes Group Statement */
/*H2- having applied to Summary variable */
/**/
proc SQL _method _tree;
footnote1 "code is having AvHgt GT 60; and 60 is lower than male or female avg";
footnote2 "name and sex sent through detail path,";
footnote3 "while sex and AvgAgt sent through grouping. ";
footnote4 "After merging, by sex, having applied to the obs & sex is dropped";
select name, avg(height) as AvHgt
from sashelp.class as C
group by sex
having AvHgt GT 60; /*60 is lower than male or female avg*/
run;

proc SQL _method _tree;
footnote1 "code is having AvHgt GT 63; and Female Avg <63 < Male Avg";
footnote2 "name and sex sent through detail path,";
footnote3 "while sex and AvgAgt sent through grouping. ";
footnote4 "After merging, by sex, having applied to the obs & sex is dropped";
select name, avg(height) as AvHgt
from sashelp.class as C
group by sex
having AvHgt GT 63;
run;

proc SQL _method _tree;
footnote1 "code is having AvHgt GT 64; Female Avg < Male Avg <64";
footnote2 "name and sex sent through detail path,";
footnote3 "while sex and AvgAgt sent through grouping. ";
footnote4 "After merging, by sex, having applied to the obs & sex is dropped";
select name, avg(height) as AvHgt
from sashelp.class as C
group by sex
having AvHgt GT 64;
quit;

/* 31 **
/*S7-Select has: YES Detail - YES Group - No Summary G2- Yes Group Statement */
/*H2- having applied to Summary variable */
/**/
/*Can not apply having to summary, if there is no summary variable in select*/

/* 32 **
/*S8-Select has: YES Detail - YES Group - YES Summary G2- Yes Group Statement */
/*H2- having applied to Summary variable */
/**/
proc SQL _method _tree;
footnote1 "Code is: having AvHgt GT 60; and 60 is lower than male or female avg";
footnote2 "name and sex sent through detail path,";
footnote3 "while sex and AvgAgt sent through grouping. ";
footnote4 "After merging, by sex, having applied to the obs";
select name, sex, avg(height) as AvHgt
from sashelp.class as C
group by sex
having AvHgt GT 60;
run;

proc SQL _method _tree;
footnote1 "Code is: having AvHgt GT 63; Female Avg <63 < Male Avg";
footnote2 "name and sex sent through detail path,";
footnote3 "while sex and AvgAgt sent through grouping. ";
footnote4 "After merging, by sex, having applied to the obs";
select name, sex, avg(height) as AvHgt
from sashelp.class as C
group by sex
having AvHgt GT 63;
run;

proc SQL _method _tree;
footnote1 "Code is: having AvHgt GT 64; /*Female Avg < Male Avg <63";
footnote2 "name and sex sent through detail path,";
footnote3 "while sex and AvgAgt sent through grouping. ";
footnote4 "After merging, by sex, having applied to the obs";
select name, sex, avg(height) as AvHgt
from sashelp.class as C
group by sex
having AvHgt GT 64;
quit;

/* 33 **
/*S1-No variables in Select G1- NO Group Statement */
/*H3- having applied to Group variable */
/**/
/*Must have variables in Select, or SAS returns a syntax error*/

/* 34 **
/*S2-Select has: NO Detail - No Group - YES Summary G1- NO Group Statement */
/*H3- having applied to Group variable */
/**/
proc SQL _method _tree;
footnote "The average is key to understanding this. All Obs are used to calculate average & having is applied late. ";
footnote2 "The average shows all obs were used ot calculate average and the having was NOT turned into a where";
footnote3 "For each obs, sex sent through detail path,";
footnote4 "while AvgAgt (One var and One Obs) sent through grouping.";
footnote5 "After merging having applied to the obs";
footnote6 "tree shows that -LITC('M') was input to the aggregation";
select avg(height)
from sashelp.class as C
having Sex ="M" and Name NE "Mike";
quit;
 footnote "";

/* 35 **
/*S3-Select has: NO Detail - YES Group - NO Summary G1- NO Group Statement */
/*H3- having applied to Group variable */
/**/
/*can not be coded - what makes a variable a group in the select statement
 is that it is part of a group statement*/

/* 36 **
/*S4-Select has: NO Detail - YES Group - YES Summary G1- NO Group Statement */
/*H3- having applied to Group variable */
/**/
/*can not be coded - what makes a variable a group in the select statement
 is that it is part of a group statement*/

/* 37 **
/*S5-Select has: YES Detail - No Group - No Summary G1- NO Group Statement */
/*H3- having applied to Group variable */
/**/
/*can not be coded - what makes a variable a group in the Having statements
 is that it is part of a group statement*/

/* 38 **
/*S6-Select has: YES Detail - No Group - YES Summary G1- NO Group Statement */
/*H3- having applied to Group variable */
/**/
/*can not be coded - what makes a variable a group in the Having statements
 is that it is part of a group statement*/

/* 39 **
/*S7-Select has: YES Detail - YES Group - No Summary G1- NO Group Statement */
/*H3- having applied to Group variable */
/**/
/*can not be coded - what makes a variable a group in the Select and Having statements
 is that it is part of a group statement*/

/* 40 **
/*S8-Select has: YES Detail - YES Group - YES Summary G1- NO Group Statement */
/*H3- having applied to Group variable */
/**/
/*can not be coded - what makes a variable a group in the Select and Having statements
 is that it is part of a group statement*/

/* 41 **
/*S1-No variables in Select G2- Yes Group Statement */
/*H3- having applied to Group variable */
/**/
/*Must have variables in select or SAS returns a syntax error*/

/* 42 **
/*S2-Select has: NO Detail - No Group - YES Summary G2- Yes Group Statement */
/*H3- having applied to Group variable */
/**/
proc SQL _method _tree;
footnote "The average is key to understanding this. Obs are used to calculate average for M & F & having is applied late. ";
footnote2 "Tree suggests having is applies at AGGR level, not data engine. The having was NOT turned into a where!";
footnote3 "";
footnote4 "One var and TWO Obs sent through grouping.";
footnote5 "having applied to the obs lae in the process";
footnote6 "tree shows that -LITC('M') was input to the aggregation";
select avg(Age)
from sashelp.class as C
group by sex
having Sex ="M" ;
quit;
 footnote "";

/* 43 **
/*S3-Select has: NO Detail - YES Group - NO Summary G2- Yes Group Statement */
/*H3- having applied to Group variable */
/**/
proc SQL _method _tree;
footnote1 "Lists all sex values filtered by the having, ordered by sex ";
footnote2 "sex sent through detail path, file is sorted and having filters the obs late";
footnote3 "WARNING: A GROUP BY clause has been transformed into an ORDER BY clause ";
footnote4 "because neither the SELECT clause nor the optional HAVING clause of the associated ";
footnote5 "table-expression referenced a summary function. ";
select Sex
from sashelp.class as C
group by sex
having Sex ="M" ;
quit;
 footnote "";

/* 44 **
/*S4-Select has: NO Detail - YES Group - YES Summary G2- Yes Group Statement */
/*H3- having applied to Group variable */
/**/
proc SQL _method _tree;
footnote1 "No obs pass down the Detail path";
footnote2 "On Group path, SAS creates two variables (sex and AvAge)";
footnote3 "The grouping file has two lines and the having filter happens late";
footnote4 "";
select Sex, avg(age) as AvAge
from sashelp.class as C
group by sex
having Sex ="M" ;
quit;
 footnote "";

proc SQL _method _tree;
footnote1 "No obs pass down the Detail path";
footnote2 "On Group path, SAS creates three variables (sex, age and AvHgt)";
footnote3 "The group file has a row for each combo of Sex*Age ";
footnote4 "The having filter happens late";
select Sex, avg(Height) as AvHgt
from sashelp.class as C
group by sex, age
having Sex ="M" ;
quit;
 footnote "";

/* 45 **
/*S5-Select has: YES Detail - No Group - No Summary G2- Yes Group Statement */
/*H3- having applied to Group variable */
/**/
proc SQL _method _tree;
footnote1 "Output lists all the name values for males";
footnote2 "names pass down the detail path - no group path created- see note below";
footnote3 "Tree suggests that the filter is passed to the data engine";
footnote4 " but sorting still occurs (by sex - pretty useless operation)";
footnote5 "WARNING: A GROUP BY clause has been transformed into an ORDER BY clause ";
footnote6 "because neither the SELECT clause nor the optional HAVING clause of the associated ";
footnote7 "table-expression referenced a summary function. ";
select name
from sashelp.class as C
group by sex
having Sex ="M" ;
quit;
 footnote "";

proc SQL _method _tree;
footnote1 "Output lists all the name values for males";
footnote2 "names pass down the detail path - no group path created- see note below";
footnote3 "Tree suggests that the filter is passed to the data engine";
footnote4 " but sorting still occurs (by sex and age)";
footnote5 "WARNING: A GROUP BY clause has been transformed into an ORDER BY clause ";
footnote6 "because neither the SELECT clause nor the optional HAVING clause of the associated ";
footnote7 "table-expression referenced a summary function. ";
select name
from sashelp.class as C
group by sex, age
having Sex ="M" ;
quit;
 footnote "";

/* 46 **
/*S6-Select has: YES Detail - No Group - YES Summary G2- Yes Group Statement */
/*H3- having applied to Group variable */
/**/

proc SQL _method _tree;
footnote1 "Output lists all the name values for males and avg age for males";
footnote2 "names & sex pass down the detail path ";
footnote3 "Group path creates a file (Sex and AvgAge) with 2 vars and 2 rows";
footnote4 "Summary stats are merged back in and having filter is applied late";
select name , avg(age) AvgAge
from sashelp.class as C
group by sex
having Sex ="M" ;
quit;
 footnote "";

/* 47 **
/*S7-Select has: YES Detail - YES Group - No Summary G2- Yes Group Statement */
/*H3- having applied to Group variable */
/**/

proc SQL _method _tree;
footnote1 "Output lists all the name & sex values for obs were sex=M";
footnote2 "names and sex pass down the detail path - no group path created- see note below";
footnote3 "Tree suggests that the filter is passed to the data engine";
footnote4 " but sorting still occurs (by sex and age)";
footnote5 "WARNING: A GROUP BY clause has been transformed into an ORDER BY clause ";
footnote6 "because neither the SELECT clause nor the optional HAVING clause of the associated ";
footnote7 "table-expression referenced a summary function. ";
select name , Sex
from sashelp.class as C
group by sex
having Sex ="M" ;
quit;
 footnote "";

/* 48 **
/*S8-Select has: YES Detail - YES Group - YES Summary G2- Yes Group Statement */
/*H3- having applied to Group variable */
/**/

proc SQL _method _tree;
footnote1 "Output lists all the name & sex values for obs were sex=M & avg age for males";
footnote2 "names and sex pass down the detail path ";
footnote3 "Group path creates a file with 2 vars (sex & AvgAge) and 2 obs";
footnote4 "Tree suggests that the Having filter is applied late in the process";
footnote5 "Where sex="M" would be applied earlier";
select name , Sex , avg(age) as AvgAge
from sashelp.class as C
group by sex
having Sex ="M" ;
quit;
 footnote "";

/* 49 **
/*S1-No variables in Select G1- NO Group Statement */
/*H4- having applied to Group and Summary Variables */
/**/
/*Must have variables in select or SAS returns a syntax error*/

/* 50 **
/*S2-Select has: NO Detail - No Group - YES Summary G1- NO Group Statement */
/*H4- having applied to Group and Summary Variables */
/**/
/*If we do not have a group variable,we can not apply a having to the group variable*/

/* 51 **
/*S3-Select has: NO Detail - YES Group - NO Summary G1- NO Group Statement */
/*H4- having applied to Group and Summary Variables */
/**/
/*If we do not have a group variable,we can not have a group in the select*/

/* 52 **
/*S4-Select has: NO Detail - YES Group - YES Summary G1- NO Group Statement */
/*H4- having applied to Group and Summary Variables */
/**/
/*If we do not have a group variable,we can not have a group in the select*/

/* 53 **
/*S5-Select has: YES Detail - No Group - No Summary G1- NO Group Statement */
/*H4- having applied to Group and Summary Variables */
/**/
/*If we do not have a group variable,we can not apply a having to the group varible*/

/* 54 **
/*S6-Select has: YES Detail - No Group - YES Summary G1- NO Group Statement */
/*H4- having applied to Group and Summary Variables */
/**/
/*If we do not have a group variable,we can not apply a having to the group varible*/

/* 55 **
/*S7-Select has: YES Detail - YES Group - No Summary G1- NO Group Statement */
/*H4- having applied to Group and Summary Variables */
/**/
/*If we do not have a group variable,we can not apply a having to the group varible*/

/* 56 **
/*S8-Select has: YES Detail - YES Group - YES Summary G1- NO Group Statement */
/*H4- having applied to Group and Summary Variables */
/**/
/*If we do not have a group variable,we can not apply a having to the group varible*/

/* 57 **
/*S1-No variables in Select G2- Yes Group Statement */
/*H4- having applied to Group and Summary Variables */
/**/
/*If we do not have a group variable,we can not apply a having to the group varible*/

/***/
/*S2-Select has: NO Detail - No Group - YES Summary G1- NO Group Statement */
/*H4- having applied to Group and Summary Variables */
/***/
proc SQL _method _tree;
footnote1 "Detail path never activates";
footnote2 "Group path creates a file with 2 vars (sex and AvgAge) and 2 rows ";
footnote3 "Tree suggests that having filtering is applied late in the process";
footnote4 "";
select avg(age) as AvgAge
from sashelp.class as C
group by sex
having Sex ="M" and AvgAge GT 13.3 ;
quit;
 footnote "";

proc SQL _method _tree;
footnote1 "Detail path never activates";
footnote2 "Group path creates a file with 2 vars (sex and AvgAge) and 2 rows ";
footnote3 "Tree suggests that having filtering is applied late in the process";
footnote4 "";
select avg(age) as AvgAge
from sashelp.class as C
group by sex
having Sex ="F" and AvgAge GT 13.3 ;
quit;
 footnote "";

/* 58 **
/*S2-Select has: NO Detail - No Group - YES Summary G2- Yes Group Statement */
/*H4- having applied to Group and Summary Variables */
/**/
/*If we do not have a summary variable in the select,
 we can not apply a having to the summary varibale*/

/* 59 **
/*S3-Select has: NO Detail - YES Group - NO Summary G2- Yes Group Statement */
/*H4- having applied to Group and Summary Variables */
/**/
proc SQL _method _tree;
footnote1 "No activity in the detail path";
footnote2 "hte grouping path creates a 2 var (sex & AvgAge) by 2 obs data set";
footnote3 "All the girl obs were used ot calculate the average";
footnote4 "Tree suggest that the having filtering is applied late in the process";
select sex, avg(age) as AvgAge
from sashelp.class as C
group by sex
having Sex ="F" and AvgAge GT 12 ;
quit;
 footnote "";

 proc SQL _method _tree;
footnote1 "No activity in the detail path";
footnote2 "The grouping path creates a 2 var (sex & AvgAge) by 2 obs data set";
footnote3 "All the girl obs were used to calculate the average";
footnote4 "Tree suggest that the having filtering is applied late in the process";
select sex, avg(age) as AvgAge
from sashelp.class as C
group by sex
having Sex ="F" and AvgAge LT 12 ;
quit;
 footnote "";

/* 60 **
/*S4-Select has: NO Detail - YES Group - YES Summary G2- Yes Group Statement */
/*H4- having applied to Group and Summary Variables */
/**/
/*If we do not have a summary variable in the select,
 we can not apply a having to the summary variable*/

/* 61 **
/*S5-Select has: YES Detail - No Group - No Summary G2- Yes Group Statement */
/*H4- having applied to Group and Summary Variables */
/**/
proc SQL _method _tree;
footnote1 "A List of male/female names and sexes go on detail path";
footnote2 "The grouping path creates a 2 var (sex & AvgAge) by 2 obs data set";
footnote3 "The gruping and the detail files are merged by sex, then sex is dropped";
footnote4 "The having filter is applies late in the process";
Footnote5 "The average age is the average age for all boys";
select name, avg(age) as AvgAge
from sashelp.class as C
group by sex
having Sex ="M" and AvgAge GT 12 ;
quit;
 footnote "";

/* 62 **
/*S6-Select has: YES Detail - No Group - YES Summary G2- Yes Group Statement */
/*H4- having applied to Group and Summary Variables */
/**/
/*If we do not have a summary variable in the select,
 we can not apply a having to the summary variable*/

/* 63 **
/*S7-Select has: YES Detail - YES Group - No Summary G2- Yes Group Statement */
/*H4- having applied to Group and Summary Variables */
/**/
proc SQL _method _tree;
footnote1 "A List of male/female names and sexes go on detail path";
footnote2 "The grouping path creates a 2 var (sex & AvgAge) by 2 obs data set";
footnote3 "The gruping and the detail files are merged by sex";
footnote4 "The having filter is applies late in the process";
Footnote5 "The average age is the average age for all boys";
select name, sex, avg(age) as AvgAge
from sashelp.class as C
group by sex
having Sex ="M" and AvgAge GT 12 ;
quit;
 footnote "";

proc SQL _method _tree;
footnote1 "A List of male/female names and sexes go on detail path";
footnote2 "The grouping path creates a 2 var (sex & AvgAge) by 2 obs data set";
footnote3 "The gruping and the detail files are merged by sex";
footnote4 "The having filter is applies late in the process";
Footnote5 "The average age is the average age for all boys";
select name, sex, avg(age) as AvgAge
from sashelp.class as C
group by sex
having Sex ="F" and AvgAge GT 13.5 ;
quit;
 footnote "";

/* 64 **
/*S8-Select has: YES Detail - YES Group - YES Summary G2- Yes Group Statement */
/*H4- having applied to Group and Summary Variables */
/**/
/*we must have variables in the select, or SAS returns an error*/

/* 65 **
/*S1-No variables in Select G1- NO Group Statement */
/*H5- Having applied to Detail Data */
/**/
proc SQL _method _tree;
footnote1 "A List of all male/female names go on detail path";
footnote2 "The grouping path creates a 1 var (AvgAge) by 1 obs data set";
footnote3 "The gruping is done on the whole data set and merged with the detial file";
footnote4 "After merging the name varaible is dropped";
footnote5 "The having filter is applies late in the process";
Footnote6 "After merging the name varaible is dropped";
select /*name,*/ avg(age) as AvgAge
from sashelp.class as C
having substr(name,1,1)in ("J","M") ;
quit;
 footnote "";

/* 66 **
/*S2-Select has: NO Detail - No Group - YES Summary G1- NO Group Statement */
/*H5- Having applied to Detail Data */
/**/
/*if we do not have a grouping statement,
 we cna not have a grouping variable on the select*/

/* 67 **
/*S3-Select has: NO Detail - YES Group - NO Summary G1- NO Group Statement */
/*H5- Having applied to Detail Data */
/**/
/*if we do not have a grouping statement,
 we cna not have a grouping variable on the select*/

/* 68 **
/*S4-Select has: NO Detail - YES Group - YES Summary G1- NO Group Statement */
/*H5- Having applied to Detail Data */
/**/
proc SQL _method _tree;
footnote1 "A List of names having substr(name,1,1)in ('J','M') go on detail path";
footnote2 "The grouping path creates a 1 var (AvgAge) by 1 obs data set";
footnote3 "Tree suggests that the having was changed to a where";
footnote4 "and applied early - before the first occurrance of SRC";
select name
from sashelp.class as C
having substr(name,1,1)in ("J","M") ;
quit;
 footnote "";

/* 69 **
/*S5-Select has: YES Detail - No Group - No Summary G1- NO Group Statement */
/*H5- Having applied to Detail Data */
/**/
proc SQL _method _tree;
footnote1 "A List of ALL names having substr(name,1,1)in ('J','M') goes on detail path";
footnote2 "The grouping path creates a 1 var (AvgAge) by 1 obs data set";
footnote3 "Average shown is average for whole data set- no filtering before calculation of avg";
footnote4 "The average was merged to all the names";
footnote5 "the having was applied late in the process";
select name , avg(age) as AvgAge
from sashelp.class as C
having substr(name,1,1)in ("J","M") ;
quit;
 footnote "";

/* 69 **
/*S5-Select has: YES Detail - No Group - No Summary G1- NO Group Statement */
/*H5- Having applied to Detail Data */
/**/
/*if we do not have a grouping statement,
 we cna not have a grouping variable on the select*/

/* 70 **
/*S6-Select has: YES Detail - No Group - YES Summary G1- NO Group Statement */
/*H5- Having applied to Detail Data */
/**/
/*if we do not have a grouping statement,
 we can not have a grouping variable on the select*/

/* 71 **
/*S7-Select has: YES Detail - YES Group - No Summary G1- NO Group Statement */
/*H5- Having applied to Detail Data */
/**/
/*If we have no variables in the select statement, SAS returns a syntax error*/

/* 72 **
/*S8-Select has: YES Detail - YES Group - YES Summary G1- NO Group Statement */
/*H5- Having applied to Detail Data */
/**/
proc SQL _method _tree;
footnote1 "A List of ALL names & sex goes on detail path";
footnote2 "The grouping path creates a 2 var (sex & AvgAge) by 2 obs data set";
footnote3 "Averages shown is average for all boys and all girls! NO filtering before calculation of avg";
footnote4 "The averages were merged to all the names by sex, and sex was dropped";
footnote5 "the having was applied late in the process, and the name variable was dropped";
select avg(age) as AvgAge
from sashelp.class as C
group by sex
having substr(name,1,1)in ("J","M") ;
quit;
 footnote "";

/* 73 **
/*S1-No variables in Select G2- Yes Group Statement */
/*H5- Having applied to Detail Data */
/**/
proc SQL _method _tree;
footnote1 "A List of ALL names & sex goes on detail path";
footnote2 "Since ther are no summary stats on select, No obs go to the grouping path";
footnote3 "The having was applied late in the process, and the name variable was dropped";
footnote4 "WARNING: A GROUP BY clause has been transformed into an ORDER BY clause ";
footnote5 "because neither the SELECT clause nor the optional HAVING clause of the associated ";
footnote6 "table-expression referenced a summary function. ";
select sex
from sashelp.class as C
group by sex
having substr(name,1,1)in ("J","M") ;
quit;
 footnote "";

/* 74 **
/*S2-Select has: NO Detail - No Group - YES Summary G2- Yes Group Statement */
/*H5- Having applied to Detail Data */
/**/
proc SQL _method _tree;
footnote1 "A List of ALL names & sex goes on detail path";
footnote2 "The grouping path creates a 2 var (sex & AvgAge) by 2 obs data set";
footnote3 "Averages shown is average for all boys and all girls! NO filtering before calculation of avg";
footnote4 "The averages were merged to all the names by sex, and sex was retained";
footnote5 "The having was applied late in the process, and the name variable was dropped";
select sex, Avg(age) as AvgAge
from sashelp.class as C
group by sex
having substr(name,1,1)in ("J","M") ;
quit;
 footnote "";

/* 75 **
/*S3-Select has: NO Detail - YES Group - NO Summary G2- Yes Group Statement */
/*H5- Having applied to Detail Data */
/**/
proc SQL _method _tree;
footnote1 "If no summary variable in select, groups are changed to order";
footnote2 "Tree suggests having is changed to a where and applied early";
select name, sex
from sashelp.class as C
group by sex
having substr(name,1,1)in ("J","M") ;
quit;
 footnote "";

/* 76 **
/*S4-Select has: NO Detail - YES Group - YES Summary G2- Yes Group Statement */
/*H5- Having applied to Detail Data */
/**/
proc SQL _method _tree;
footnote1 "Averages are for all girls and all bys- no obs filter before average calculation";
footnote2 "All names & sex are sent to detail path";
footnote3 "Group path creates a 2 var (aex & avgAge) by 2 row data set";
footnote4 "Averages are merged in by sex";
footnote5 "Tree suggests that the having filter is applied late in the process";
select name, avg(age) as AvgAge
from sashelp.class as C
group by sex
having substr(name,1,1)in ("J","M") ;
quit;
 footnote "";

/***/
/*S7-Select has: YES Detail - YES Group - No Summary G1- NO Group Statement */
/*H5- Having applied to Detail Data */
/***/
proc SQL _method _tree;
footnote1 "A List of FILTERED names & sex goes on detail path";
footnote2 "Since there are no summary stats on select, No obs go to the grouping path";
footnote3 "since no summary function on select, group changed to Sort";
footnote4 "having changed to a where AND APPLIED EARLY";
footnote5 "WARNING: A GROUP BY clause has been transformed into an ORDER BY clause ";
footnote6 "because neither the SELECT clause nor the optional HAVING clause of the associated ";
footnote7 "table-expression referenced a summary function. ";
select name, sex
from sashelp.class as C
group by sex
having substr(name,1,1)in ("J","M") ;
quit;
 footnote "";

/***/
/*S8-Select has: YES Detail - YES Group - YES Summary G1- NO Group Statement */
/*H5- Having applied to Detail Data */
/***/
/*Example*/
proc SQL _method _tree;
footnote1 "A List of UN-FILTERED names & sex goes on detail path";
footnote2 "Since there are no Where clauses, all obs flow into the grouping path";
footnote3 "After the groupng is done, the two paths merge- having all obs in detal path";
footnote4 "having changed applied after the merge - detail obd filtered";
footnote5 "the average shown in the listing is the average for all obs in RAW";
footnote6 "because neither the SELECT clause nor the optional HAVING clause of the associated ";
footnote7 "table-expression referenced a summary function. ";
select name, sex, mean(age)
from sashelp.class as C
group by sex
having substr(name,1,1)in ("J","M") ;
quit;
 footnote "";

/***/
/*S1-No variables in Select G1- NO Group Statement */
/*H6- Having applied to Summary and Detail Data */
/***/
/*If no variables in select, SAS returns a syntax Error*/

/***/
/*S2-Select has: NO Detail - No Group - YES Summary G1- NO Group Statement */
/*H6- Having applied to Summary and Detail Data */
/***/
proc SQL _method _tree;
footnote1 "The detal variable(name) in the having sends all names & sex down detail path";
footnote2 "Since there is a summary on select, all obs go into the grouping path";
footnote3 "since there is no grouping var, all vars go on one group";
footnote4 "Overall avg is merged to all obs and fname filtering is applied";
select mean(age) as mean_age
from sashelp.class as C
having substr(name,1,1)in ("J","M") and mean_age GT 12;
quit;
 footnote "";

/***/
/*S3-Select has: NO Detail - YES Group - NO Summary G1- NO Group Statement */
/*H6- Having applied to Summary and Detail Data */
/***/
/*If there is no group statement we cn not have a group variable on the select */

/***/
/*S4-Select has: NO Detail - YES Group - YES Summary G1- NO Group Statement */
/*H6- Having applied to Summary and Detail Data */
/***/
/*If there is no group statement we cn not have a group variable on the select */

/***/
/*S5-Select has: YES Detail - No Group - No Summary G1- NO Group Statement */
/*H6- Having applied to Summary and Detail Data */
/***/

proc SQL _method _tree;
footnote1 "witout a summary in the select, you can not apply having to summary";
footnote2 "SAS returns syntax error";
footnote3 "";
footnote4 "";
select name
from sashelp.class as C
having substr(name,1,1)in ("J","M") and mean_age GT 12;
quit;
 footnote "";

/***/
/*S6-Select has: YES Detail - No Group - YES Summary G1- NO Group Statement */
/*H6- Having applied to Summary and Detail Data */
/***/

proc SQL _method _tree;
footnote1 "detail(name) in select or in having sends names to detail";
footnote2 "since there is no where, all names go to detial path";
footnote3 "since there is no where, all obs go to group path";
footnote4 "since there is no group statement, there is one group";
footnote5 "after merging, the having is applied";
footnote6 "";
footnote7 "";

select name, avg(age) as mean_age
from sashelp.class as C
having substr(name,1,1)in ("J","M") and mean_age GT 14;
/*having substr(name,1,1)in ("J","M") and mean_age GT 14; */
quit;
 footnote "";

/***/
/*S7-Select has: YES Detail - YES Group - No Summary G1- NO Group Statement */
/*H6- Having applied to Summary and Detail Data */
/***/
/*without a group statement, we can not have a group var in the select*/

/***/
/*S8-Select has: YES Detail - YES Group - YES Summary G1- NO Group Statement */
/*H6- Having applied to Summary and Detail Data */
/***/
/*without a group statement, we can not have a group var in the select*/

/***/
/*S1-No variables in Select G1- NO Group Statement */
/*H6- Having applied to Summary and Detail Data */
/***/
/*without variables in the select statement, SAS returns a syntax error*/

/***/
/*S2-Select has: NO Detail - No Group - YES Summary G1- NO Group Statement */
/*H6- Having applied to Summary and Detail Data */
/***/

proc SQL _method _tree;
footnote1 "detail(name) in select or in having sends names to detail";
footnote2 "since there is no where, all names go to detail path";
footnote3 "since there is no where, all obs go to group path";
footnote4 "since there is a group by sex statement, there are two groups (averages)";
footnote5 "after merging by sex, sex is dropped, and the having is applied";
footnote6 "Averages shown are the averages for thw all maes and females";
footnote7 "";

select avg(age) as mean_age, sex
from sashelp.class as C
group by sex
having substr(name,1,1)in ("J","M") and mean_age GT 13;
/*having substr(name,1,1)in ("J","M") and mean_age GT 14; */
quit;
 footnote "";
/***/
/*S3-Select has: NO Detail - YES Group - NO Summary G1- NO Group Statement */
/*H6- Having applied to Summary and Detail Data */
/***/

proc SQL _method _tree;
footnote1 "SYNTAX ERROR ";
footnote2 "The having wants to see a variable named mean_age ";
footnote3 "The variable is not created in select, and having can not create a summary";
footnote4 "since there is no where, all obs go to group path";

select sex
from sashelp.class as C
group by sex
having substr(name,1,1)in ("J","M") and mean_age GT 13;
/*having substr(name,1,1)in ("J","M") and mean_age GT 14; */
quit;
 footnote "";

/***/
/*S4-Select has: NO Detail - YES Group - YES Summary G1- NO Group Statement */
/*H6- Having applied to Summary and Detail Data */
/***/
/*with no group statement, we can not put a group var in the select*/

 /***/
/*S5-Select has: YES Detail - No Group - No Summary G1- NO Group Statement */
/*H6- Having applied to Summary and Detail Data */
/***/
/*with no summary variable in the select,
 you can not filer on a summary statement in the having*/
/*the ahving will not create a summary variable, think of the SQL path*/

/***/
/*S6-Select has: YES Detail - No Group - YES Summary G1- NO Group Statement */
/*H6- Having applied to Summary and Detail Data */
/***/
proc SQL _method _tree;
footnote1 "Detail, in select, sends all obs through detail path";
footnote2 "summary in select sends all obs through grouping path, creating a 1 by 1 file";
footnote3 "the merge happens and then obs get filtered";
footnote4 "since there is no where, all obs go to group path";

select name, avg(age) as mean_age
from sashelp.class as C
having substr(name,1,1)in ("J","M") and mean_age GT 13;
/*having substr(name,1,1)in ("J","M") and mean_age GT 14; */
quit;
 footnote "";

/***/
/*S7-Select has: YES Detail - YES Group - No Summary G1- NO Group Statement */
/*H6- Having applied to Summary and Detail Data */
/***/
/*No summary in select, so no obs sent to grouping
 - having does not create summary file*/

proc SQL _method _tree;
footnote1 "No summary in select, so no obs sent to grouping - having does not create summary file";
footnote2 "Syntax error";

select name, sex
from sashelp.class as C
having substr(name,1,1)in ("J","M") and mean_age GT 13;
/*having substr(name,1,1)in ("J","M") and mean_age GT 14; */
quit;
 footnote "";

/***/
/*S8-Select has: YES Detail - YES Group - YES Summary G1- NO Group Statement */
/*H6- Having applied to Summary and Detail Data */
/***/
proc SQL _method _tree;
footnote1 "Detail in select sends all obs into setail path";
footnote2 "Avg in select sends all obs through the grouping path (1 by 1 file)";
footnote3 "the average shown is for all obs";
footnote4 "Details and summary are merged and having applies filtering";
footnote5 "";
footnote6 "";

select name, sex , avg(age) as Avg_age
from sashelp.class as C
having substr(name,1,1)in ("J","M") and Avg_age GT 13;
/*having substr(name,1,1)in ("J","M") and avg_age GT 14; */
quit;
 footnote "";

/***/
/*S1-No variables in Select G1- NO Group Statement */
/*H7- Having applied to Group and Detail Data */
/***/
/*If no variables in the select, SAs returns a syntax error*/

/***/
/*S2-Select has: NO Detail - No Group - YES Summary G1- NO Group Statement */
/*H7- Having applied to Group and Detail Data */
/***/
/*with no group statement, we can not apply a having to the group statement*/

/***/
/*S3-Select has: NO Detail - YES Group - NO Summary G1- NO Group Statement */
/*H7- Having applied to Group and Detail Data */
/***/
/*with no group statement, we can not have a group in the statement*/

/***/
/*S4-Select has: NO Detail - YES Group - YES Summary G1- NO Group Statement */
/*H7- Having applied to Group and Detail Data */
/***/
/*with no group statement, we do not have a group in the having*/

/***/
/*S5-Select has: YES Detail - No Group - No Summary G1- NO Group Statement */
/*H7- Having applied to Group and Detail Data */
/***/
/*with no group statement, we do not have a group in the having*/

/***/
/*S6-Select has: YES Detail - No Group - YES Summary G1- NO Group Statement */
/*H7- Having applied to Group and Detail Data */
/***/
/*with no group statement, we do not have a group in the having*/

/***/
/*S7-Select has: YES Detail - YES Group - No Summary G1- NO Group Statement */
/*H7- Having applied to Group and Detail Data */
/***/
/*with no group statement, we do not have a group in the having*/

/***/
/*S8-Select has: YES Detail - YES Group - YES Summary G1- NO Group Statement */
/*H7- Having applied to Group and Detail Data */
/***/

/* 105 **
/*S1-No variables in Select G2- Yes Group Statement */
/*H7- Having applied to Group and Detail Data */
/**/

/* 106 **
/*S2-Select has: NO Detail - No Group - YES Summary G2- Yes Group Statement */
/*H7- Having applied to Group and Detail Data */
/**/
/*with no group statement, we do not have a group in the having*/

/***/
/*S2-Select has: NO Detail - No Group - YES Summary G1- NO Group Statement */
/*H7- Having applied to Group and Detail Data */
/***/
/*with no group statement, we do not have a group in the having*/

/* 107 **
/*S3-Select has: NO Detail - YES Group - NO Summary G2- Yes Group Statement */
/*H7- Having applied to Group and Detail Data */
/**/
/*with no group statement, we do not have a group in the having*/

/* 108 **
/*S4-Select has: NO Detail - YES Group - YES Summary G2- Yes Group Statement */
/*H7- Having applied to Group and Detail Data */
/**/
/*with no group statement, we do not have a group in the having*/

/* 109 **
/*S5-Select has: YES Detail - No Group - No Summary G2- Yes Group Statement */
/*H7- Having applied to Group and Detail Data */
/**/
/*with no group statement, we do not have a group in the having*/

/* 110 **
/*S6-Select has: YES Detail - No Group - YES Summary G2- Yes Group Statement */
/*H7- Having applied to Group and Detail Data */
/**/
/*with no group statement, we do not have a group in the having*/

/* 111 **
/*S7-Select has: YES Detail - YES Group - No Summary G2- Yes Group Statement */
/*H7- Having applied to Group and Detail Data */
/**/
/*with no group statement, we do not have a group in the having*/

/* 112 **
/*S8-Select has: YES Detail - YES Group - YES Summary G2- Yes Group Statement */
/*H7- Having applied to Group and Detail Data */
/**/
/*with no group statement, we do not have a group in the having*/

/* 113 **
/*S1-No variables in Select G1- NO Group Statement */
/*H8- Having applied to Summary, Group and Detail Data*/
/**/
/*If there are no variables in the select, SAS returns a syntax error*/

/* 114 **
/*S2-Select has: NO Detail - No Group - YES Summary G1- NO Group Statement */
/*H8- Having applied to Summary, Group and Detail Data*/
/**/
/*Without a group statement, we can not apply a having filter to a group variable*/

/* 115 **
/*S3-Select has: NO Detail - YES Group - NO Summary G1- NO Group Statement */
/*H8- Having applied to Summary, Group and Detail Data*/
/**/
/*Without a group statement, we can not apply a having filter to a group variable*/

/* 116 **
/*S4-Select has: NO Detail - YES Group - YES Summary G1- NO Group Statement */
/*H8- Having applied to Summary, Group and Detail Data*/
/**/
/*Without a group statement, we can not apply a having filter to a group variable*/

/* 117 **
/*S5-Select has: YES Detail - No Group - No Summary G1- NO Group Statement */
/*H8- Having applied to Summary, Group and Detail Data*/
/**/
/*Without a group statement, we can not apply a having filter to a group variable*/

/* 118 **
/*S6-Select has: YES Detail - No Group - YES Summary G1- NO Group Statement */
/*H8- Having applied to Summary, Group and Detail Data*/
/**/
/*Without a group statement, we can not apply a having filter to a group variable*/

/* 119 **
/*S7-Select has: YES Detail - YES Group - No Summary G1- NO Group Statement */
/*H8- Having applied to Summary, Group and Detail Data*/
/**/
/*Without a group statement, we can not apply a having filter to a group variable*/

/* 120 **
/*S8-Select has: YES Detail - YES Group - YES Summary G1- NO Group Statement */
/*H8- Having applied to Summary, Group and Detail Data*/
/**/
/*Without a group statement, we can not apply a having filter to a group variable*/

/* 121 **
/*S1-No variables in Select G2- Yes Group Statement */
/*H8- Having applied to Summary, Group and Detail Data*/
/**/
/*Without a group statement, we can not apply a having filter to a group variable*/

/* 122 **
/*S2-Select has: NO Detail - No Group - YES Summary G2- Yes Group Statement */
/*H8- Having applied to Summary, Group and Detail Data*/
/**/

/* 123 **
/*S3-Select has: NO Detail - YES Group - NO Summary G2- Yes Group Statement */
/*H8- Having applied to Summary, Group and Detail Data*/
/**/

/* 124 **
/*S4-Select has: NO Detail - YES Group - YES Summary G2- Yes Group Statement */
/*H8- Having applied to Summary, Group and Detail Data*/
/**/

/* 125 **
/*S5-Select has: YES Detail - No Group - No Summary G2- Yes Group Statement */
/*H8- Having applied to Summary, Group and Detail Data*/
/**/

/* 126 **
/*S6-Select has: YES Detail - No Group - YES Summary G2- Yes Group Statement */
/*H8- Having applied to Summary, Group and Detail Data*/
/**/

/* 127 **
/*S7-Select has: YES Detail - YES Group - No Summary G2- Yes Group Statement */
/*H8- Having applied to Summary, Group and Detail Data*/
/**/

/* 128 **
/*S8-Select has: YES Detail - YES Group - YES Summary G2- Yes Group Statement */
/*H8- Having applied to Summary, Group and Detail Data*/
/**/

SQL_Set_operators_Venn_Stuff_.sas
/**
Section __: Reduce the number of obs in the data set: the slide is crowded
***/
data MyClass;
set SASHelp.Class;
if mod(_N_,7) in (0,1,2,4,6,7) ;
label Name="Student name";
run;

/**
quick reports
***/
**success*;
proc sql;
select "Boys " as Group, name, age, sex
from MyClass
where sex="M"
union
select "GIRLS" as Group, name, age, sex
from MyClass
where sex="F";
quit;

**success*;
proc sql;
create table look2 as
select "Boys" as Group, name, age, sex
from MyClass
where sex="M"
union
select "GIRLS" as Group, name, age, sex
from MyClass
where sex="F";
quit;

options nocenter;
proc print data=look2;
run;

***;

ャャャャャャャャャャャャャャャャャャャャャャャャ
1 there are 0 unknowns in the data set
3 there are 10 boys in the data set
2 there are 9 Girls in the data set
;

proc SQL;
select "3", "there are", max(0,count(*)) , "boys in the data set"
from MyClass where sex="M"
union all
select "2", "there are", max(0,count(*)) , "Girls in the data set"
from MyClass where sex="F"
union all
select "1", "there are", max(0,count(*)) , "unknowns in the data set"
from MyClass where sex=" "
order by 1;
quit;

proc SQL;
select "3" as r,"there are", max(0,count(*)) , "boys in the data set"
from MyClass where sex="M"
 union corr
select "2" as r, "there are", max(0,count(*)) , "Girls in the data set"
from MyClass where sex="F"
 union corr
select "1" as r, "there are", max(0,count(*)) , "unknowns in the data set"
from MyClass where sex=" "
order by 1;
quit;

/***
Venn schreier
***/
****DIFFERENT VARIABLES*********************;
data class;
set SASHelp.Class;
Name_len=length(left(name));
run;

proc print data=class;
run;

proc SQl;
Create table OneW3VarsNAH as
	select Name_len
		,name
		,age
		,height
	From 	CLASS
	Where age LT 14 and length(name) IN (5,6)
 order by name;

 Create table TwoW3VarsNAW as
	select Name_len
		,name
		,age
		,weight
	From 	CLASS
	Where age LT 14 and length(name)in(6,7)
 order by age
	;

proc print data=OneW3VarsNAH;
title "data=OneW3VarsNAH";run;
proc print data=TwoW3VarsNAW;
title "data=TwoW3VarsNAW";run;
run;

/*Union Different variables*/
proc sql;
create table union_different as
 select *
 from OneW3VarsNAH
union
 select *
 from TwoW3VarsNAW
;
quit;
proc print data=Union_different;
title "data=Union_different";	
run;

/*Union ALL Different variables*/
proc sql;
create table union_ALL_different as
 select *
 from OneW3VarsNAH
union all
 select *
 from TwoW3VarsNAW
order by name;
;
quit;
proc print data=Union_ALL_different;
title "data=Union_ALL_different";	
run;

/*Union Corresponding Different variables*/
proc sql;
create table union_corr_different as
 select *
 from OneW3VarsNAH
union corresponding
 select *
 from TwoW3VarsNAW
order by name;
;
quit;
proc print data=union_corr_different;
title "data=union_corr";	
run;

/*Union ALL Corresponding Different variables*/
proc sql;
create table union_ALL_corr_different as
 select *
 from OneW3VarsNAH
union all corresponding
 select *
 from TwoW3VarsNAW
order by name;
;
quit;
proc print data=union_ALL_corr_different;
title "data=union_ALL_corr_different";	
run;

/***OUTER UNION**************;
/*Outer Union Different variables*/
proc sql;
create table Out_union_different as
 select *
 from OneW3VarsNAH
outer union
 select *
 from TwoW3VarsNAW
order by name;
;
quit;
proc print data=Out_union_different;
title "data=Out_un_different";	
run;

/*Outer Union Corresponding Different variables*/
proc sql;
create table Out_un_corr_different as
 select *
 from OneW3VarsNAH
outer union corresponding
 select *
 from TwoW3VarsNAW
;
quit;
proc print data=Out_un_corr_different;
title "data=Out_un_corr_different";	
run;

/*Outer Union Corresponding all Different variables*/
proc sql;
create table Out_un_corr_all_different as
 select *
 from OneW3VarsNAH
outer union corresponding all
 select *
 from TwoW3VarsNAW
;
quit;
proc print data=Out_un_corr_all_different;
title "data=Out_un_corr_all_different";	
run;

/***Intersect Different variables*************/
proc sql;
create table Intersect_different as
 select *
 from OneW3VarsNAH
Intersect
 select *
 from TwoW3VarsNAW
;
quit;
proc contents data=intersect_different;
run;

proc print data=Intersect_different;
title "Intersect_different";	
run;

/*****Except Different variables*********/
proc sql;
create table Except_different as
 select *
 from OneW3VarsNAH
Except
 select *
 from TwoW3VarsNAW
order by name;
quit;
proc contents data=Except_different;
run;

proc print data=Except_different;
title "Except_different";	
run;

***;
***;
****Top file is thin 1 VARIABLES*********************;
data class;
set MyClass;
Name_len=length(left(name));
run;

proc print data=class;
run;

proc SQl;
Create table OneW3VarsNA_T_thin as
	select Name_len
		,name
		,age
		/*,height*/
	From 	class
	Where age LT 14 and length(name) IN (5,6)
 order by name;

 Create table TwoW3VarsNAW_T_thin as
	select Name_len
		,name
		,age
		,weight
	From 	class
	Where age LT 14 and length(name)in(6,7)
 order by age
	;

proc print data=OneW3VarsNA_T_thin;
title "data=OneW3VarsNA_T_thin";run;
proc print data=TwoW3VarsNAW_T_thin;
title "data=TwoW3VarsNAW_T_thin";run;
run;

/*Union top is _thin 1 variables*/
proc sql;
create table union_T_thin as
 select *
 from OneW3VarsNA_T_thin
union
 select *
 from TwoW3VarsNAW_T_thin
order by name;
;
quit;
proc print data=Union_T_thin;
title "data=Union_T_thin";	
run;

/*Union ALL top is thin variables*/
proc sql;
create table union_ALL_T_thin as
 select *
 from OneW3VarsNA_T_thin
union all
 select *
 from TwoW3VarsNAW_T_thin
order by name;
;
quit;
proc print data=Union_ALL_T_thin;
title "data=Union_ALL_T_thin";	
run;

/*Union Corresponding Top is thin 1 variable*/
proc sql;
create table union_corr_T_thin as
 select *
 from OneW3VarsNA_T_thin
union corresponding
 select *
 from TwoW3VarsNAW_T_thin
order by name;
;
quit;
proc print data=union_corr_T_thin;
title "data=union_corresponding_T_thin";	
run;

/*Union ALL Corresponding top is _thin variables*/
proc sql;
create table union_ALL_corr_T_thin as
 select *
 from OneW3VarsNA_T_thin
union all corresponding
 select *
 from TwoW3VarsNAW_T_thin
order by name;
;
quit;
proc print data=union_ALL_corr_T_thin;
title "data=union_ALL_corr_T_thin";	
run;

/***OUTER UNION top is _thin 1 variable **************;
/*Outer Union Different variables*/
proc sql;
create table Out_union_T_thin as
 select *
 from OneW3VarsNA_T_thin
outer union
 select *
 from TwoW3VarsNAW_T_thin
order by name;
;
quit;
proc print data=Out_union_T_thin;
title "data=Out_un_T_thin";	
run;

/*Outer Union Corresponding top is _thin 1 variable*/
proc sql;
create table Out_un_corr_T_thin as
 select *
 from OneW3VarsNA_T_thin
outer union corresponding
 select *
 from TwoW3VarsNAW_T_thin
order by name;
;
quit;
proc print data=Out_un_corr_T_thin;
title "data=Out_un_corr_T_thin";	
run;

/*Outer Union Corresponding all top is _thin 1 variable*/
proc sql;
create table Out_un_corr_all_T_thin as
 select *
 from OneW3VarsNA_T_thin
outer union corresponding all
 select *
 from TwoW3VarsNAW_T_thin
 order by name;
;
quit;
proc print data=Out_un_corr_all_T_thin;
title "data=Out_un_corr_all_T_thin";	
run;

/***Intersect top is _thin 1 variable *************/
proc sql;
create table Intersect_T_thin as
 select *
 from OneW3VarsNA_T_thin
Intersect
 select *
 from TwoW3VarsNAW_T_thin
;
quit;
proc contents data=intersect_T_thin;
run;

proc print data=Intersect_T_thin;
title "Intersect_T_thin";	
run;

/*****Except Top file is _thin 1 variable *********/
proc sql;
create table Except_T_thin as
 select *
 from OneW3VarsNA_T_thin
Except
 select *
 from TwoW3VarsNAW_T_thin
order by name;
quit;
proc contents data=Except_T_thin ;
run;

proc print data=Except_T_thin ;
title "Except_T_thin ";	
run;

***;
****Top file is Wide 1 VARIABLES*********************;
data class;
set MyClass;
Name_len=length(left(name));
run;

proc print data=class;
run;

proc SQl;
Create table OneW3VarsNAH_T_Wide as
	select Name_len
		,name
		,age
		,height
	From 	class
	Where age LT 14 and length(name) IN (5,6)
 order by name;

 Create table TwoW3VarsNA_T_Wide as
	select Name_len
		,name
		,age
		/*,weight*/
	From 	class
	Where age LT 14 and length(name)in(6,7)
 order by age
	;

proc print data=OneW3VarsNAH_T_Wide;
title "data=OneW3VarsNAH_T_Wide";run;
proc print data=TwoW3VarsNA_T_Wide;
title "data=TwoW3VarsNAW_T_Wide";run;
run;

/*Union top is _Wide 1 variable*/
proc sql;
create table union_T_Wide as
 select *
 from OneW3VarsNAH_T_Wide
union
 select *
 from TwoW3VarsNA_T_Wide
order by name;
;
quit;
proc print data=Union_T_Wide;
title "data=Union_T_Wide";	
run;

/*Union ALL top is _wide 1 variable*/
proc sql;
create table union_ALL_T_wide as
 select *
 from OneW3VarsNAH_T_wide
union all
 select *
 from TwoW3VarsNA_T_wide
order by name;
;
quit;
proc print data=Union_ALL_T_wide;
title "data=Union_ALL_T_wide";	
run;

/*Union Corresponding Top _wide 1 variable*/
proc sql;
create table union_corr_T_wide as
 select *
 from OneW3VarsNAH_T_wide
union corresponding
 select *
 from TwoW3VarsNA_T_wide
order by name;
;
quit;
proc print data=union_corr_T_wide;
title "data=union_corresponding_T_wide";	
run;

/*Union ALL Corresponding top is _wide 1 variabl*/
proc sql;
create table union_ALL_corr_T_wide as
 select *
 from OneW3VarsNAH_T_wide
union all corresponding
 select *
 from TwoW3VarsNA_T_wide
order by name;
;
quit;
proc print data=union_ALL_corr_T_wide;
title "data=union_ALL_corr_T_wide";	
run;

/***OUTER UNION top is _wide 1 variable**************;
/*Outer Union _wide variables*/
proc sql;
create table Out_union_T_wide as
 select *
 from OneW3VarsNAH_T_wide
outer union
 select *
 from TwoW3VarsNA_T_wide
order by name;
;
quit;
proc print data=Out_union_T_wide;
title "data=Out_un_T_wide";	
run;

/*Outer Union Corresponding top is _wide 1 variable*/
proc sql;
create table Out_un_corr_T_wide as
 select *
 from OneW3VarsNAH_T_wide
outer union corresponding
 select *
 from TwoW3VarsNA_T_wide
 order by name;
;
quit;
proc print data=Out_un_corr_T_wide;
title "data=Out_un_corr_T_wide";	
run;

/*Outer Union Corresponding all top is _Wide 1 variables*/
proc sql;
create table Out_un_corr_all_T_Wide as
 select *
 from OneW3VarsNAH_T_Wide
outer union corresponding all
 select *
 from TwoW3VarsNA_T_Wide
 order by name;
 ;
quit;
proc print data=Out_un_corr_all_T_Wide;
title "data=Out_un_corr_all_T_Wide";	
run;

/***Intersect top is _Wide 1 variable *************/
proc sql;
create table Intersect_T_Wide as
 select *
 from OneW3VarsNAH_T_Wide
Intersect
 select *
 from TwoW3VarsNA_T_Wide
;
quit;
proc contents data=intersect_T_Wide;
run;

proc print data=Intersect_T_Wide;
title "Intersect_T_Wide";	
run;

/*****Except Top file is Wide 1 variables*********/
proc sql;
create table Except_T_Wide as
 select *
 from OneW3VarsNAH_T_Wide
Except
 select *
 from TwoW3VarsNA_T_Wide
order by name;
quit;
proc contents data=Except_T_Wide ;
run;

proc print data=Except_T_Wide ;
title "Except_T_Wide ";	
run;

/***/
/*************** _same **************************/
/** Schreirer Venn same variables ***/
data class;
set MyClass;
Name_len=length(left(name));
run;

proc print data=class;
run;

proc SQl;
Create table OneW3VarsNAH_SAME as
	select Name_len
		,name
		,age
		,height
	From 	class
	Where age LT 14 and length(name) IN (5,6)
 order by name;

 Create table TwoW3VarsNAH_SAME as
	select Name_len
		,name
		,age
		,height
	From 	class
	Where age LT 15 and length(name)in(6,7)
 order by Name_len
	;

proc print data=OneW3VarsNAH_Same;
title "data=OneW3VarsNAH_Same";run;
proc print data=TwoW3VarsNAH_Same;
title "data=TwoW3VarsNAH_Same";run;
run;

/*Union _Same variables*/
proc sql;
create table union_Same as
 select *
 from OneW3VarsNAH_Same
union
 select *
 from TwoW3VarsNAH_Same
order by name;
quit;
proc print data=Union_Same;
title "data=Union_Same";	
run;

/*Union ALL _same variables*/
proc sql;
create table union_ALL_same as
 select *
 from OneW3VarsNAH_same
union all
 select *
 from TwoW3VarsNAH_same
order by name;
quit;
proc print data=Union_ALL_same;
title "data=Union_ALL_same";	
run;

/*Union Corresponding _same variables*/
proc sql;
create table union_corr_same as
 select *
 from OneW3VarsNAH_same
union corresponding
 select *
 from TwoW3VarsNAH_same
 order by name;
;
quit;
proc print data=union_corr_same;
title "data=union_corr_same";	
run;

/*Union ALL Corresponding _same variables*/
proc sql;
create table union_ALL_corr_same as
 select *
 from OneW3VarsNAH_same
union all corresponding
 select *
 from TwoW3VarsNAH_same
order by name;
quit;
proc print data=union_ALL_corr_same;
title "data=union_ALL_corr_same";	
run;

/***OUTER UNION**************;
/*Outer Union Different variables*/
proc sql;
create table Out_un_same
 as
 select *
 from OneW3VarsNAH_same
outer union
 select *
 from TwoW3VarsNAH_same
;
quit;
proc print data=Out_un_same;
title "data=Out_un_same";	
run;

/*Outer Union Corresponding _same variables*/
proc sql;
create table Out_un_corr_same as
 select *
 from OneW3VarsNAH_same
outer union corresponding
 select *
 from TwoW3VarsNAH_same
 order by name
;
quit;
proc print data=Out_un_corr_same;
title "data=Out_un_corr_same";	
run;

/*Outer Union Corresponding all _same variables*/
proc sql;
create table Out_un_corr_all_same as
 select *
 from OneW3VarsNAH_same
outer union corresponding all
 select *
 from TwoW3VarsNAH_same
order by name;
;
quit;
proc print data=Out_un_corr_all_same;
title "data=Out_un_corr_all_same";	
run;

/***Intersect _same variables*************/
proc sql;
create table Intersect_same as
 select *
 from OneW3VarsNAH_same
Intersect
 select *
 from TwoW3VarsNAH_same
order by name;
quit;
proc contents data=intersect_same;
run;

proc print data=Intersect_same;
title "Intersect_same";	
run;

/*****Except _same variables*********/
proc sql;
create table Except_same as
 select *
 from OneW3VarsNAH_same
Except
 select *
 from TwoW3VarsNAH_same
order by name;
;
quit;
proc contents data=Except_same;
run;

proc print data=Except_same;
title "Except_same";	
run;

Sub_queries_st_pats_day.sas
proc SQL;
create table eligable
(ssn num
 ,sex char(1));
insert into eligable
values(012403186,"M")
values(022503199,"F")
values(032503199,"M")
values(042503199,"M")
values(052503199,"F")
values(062503199,"F")
values(072503199,"M")
values(082503199,"F")
values(092503199,"M")
values(102503199,)
values(112503199,"M");
quit;

proc SQL;
create table eligable
(ssn num
 ,sex char(1));
insert into eligable
values(012403186,"M")
values(022503199,"F")
values(032503199,"M")
values(042503199,"M")
values(052503199,"F")
values(062503199,"F")
values(072503199,"M")
values(082503199,"F")
values(092503199,"M")
values(102503199,"F")
values(112503199,"M");
quit;

proc SQL;
create table Attended
(ssn num
,sex Char(1));
insert into Attended
values(042503199,"M")
values(082503199,"F");
quit;

*scientific notation problem and fix;
proc SQL ;
select ssn into :SSNAttnded separated by "," from attended;
quit;
%put &SSNAttnded;

proc format ;
value $gendr 	M="Male"
				F="Female";
quit;

proc sql;
select distinct(sex) format=$gendr. into :sexlist separated by ' and sex NE '
from attended;
%put &sexlist;

proc sql;
/*can concatinate strings inside a distinct but Format is not applied.
 can have complex separators*/
select distinct('"'||sex||'"') format=$gendr.
 into :sexlist separated by ' and sex NE '
from attended;
%put &sexlist;

%let sexlist=;
proc sql; /*syntax Error fails to run */
select distinct('"'||sex format=$gendr.||'"') format=$gendr. into :sexlist
 separated by ' and sex NE '
from attended;
%put &sexlist;

proc sql;
select distinct(sex) format=$gendr. into :sexlist separated by '","'
from attended;
%put &sexlist;

proc sql;/*Fails format must be outside the distincting parenthesis*/
select distinct(sex format=$gendr.) into :sexlist separated by '","'
from attended;
%put &sexlist;

proc sql;
select distinct('"'||sex format=$gendr. into :sexlist separated by '","'
from attended;
%put &sexlist;

proc sql;
select distinct(sex) format=$gendr. into :sexlist separated by '","'
from attended;
%put &sexlist;

*******************;
*loading multiple values into multiple macros
proc sql;
select 	name
 	,age
		,height
 into :namelist separated by "*"
 , :agelist separated by " "
 	, :heightlist separated by "-"
		from sashelp.class;
%put &namelist &agelist &heightlist;

****;
Proc SQL;
select name,sex, age into
	 :name1-:name99
	 ,:sex1-:sex99
 ,:age1-:age99
	 from SAShelp.class;
	 quit;
options nocenter ls=150;
Proc print data=sashelp.vmacro;
where upcase(scope)="GLOBAL";
run;

*cool creation of a quoted string;
proc sql noprint;
SELECT '"'||TRIM(NAME)||'"' INTO :NAMELIST SEPARATED BY ","
FROM SASHELP.cLASS;
%PUT &NAMELIST;

%let namelist=;
proc sql noprint;
SELECT quote(NAME) INTO :NAMELIST SEPARATED BY ","
FROM SASHELP.cLASS;
quit;
%PUT &NAMELIST;

%let namelist=;
proc sql noprint; /*Cooler way to add quotes*/
SELECT quote(TRIM(NAME)) INTO :NAMELIST SEPARATED BY ","
FROM SASHELP.cLASS;
quit;
%PUT &NAMELIST;

%let namelist=;
proc sql noprint; /*Cooler way to add quotes*/
SELECT distinct quote(TRIM(NAME)) INTO :NAMELIST SEPARATED BY ","
FROM SASHELP.cLASS;
quit;
%PUT &NAMELIST;

**one pass macr variables ;
proc SQl;
select count(*) as totalPats
 ,sum(sex="M") as males /*Sum and group interact to determine rows*/
 ,sum(sex="F") as females
	 ,(calculated males/ calculated TotalPats) 	as PctM
	 ,(calculated females/ calculated TotalPats) 	as PctF
	 ,sum(Height*(sex="M")) /calculated males 	as M_AV_HT
 ,sum(Height*(sex="F")) /calculated females 	as F_AV_HT
 into 	:TotPats
			,:CountM
			,:CountF
			,:PctM
			,:PctF
			,:M_av_hgt
			,:F_av_hgt
	from SAShelp.class;/*No group & sumary functoins, so one line in ouptut data set*/
;
quit;
proc print data=sashelp.vmacro;
where scope ="GLOBAL"
 AND UPCASE(NAME) IN("TOTPATS","COUNTM","COUNTF","PCTM","PCTF","M_AV_HGT","F_AV_HGT");
run;

/***
Section __:Subqueries in the From, Where , Having and in the Select clauses
**/
subqueries in the From are an AD-HOC VIEW ****************;
proc sql;
select * from (select Name,sex, age, age*12 as age_mo
					from sashelp.class
						where sex="F")
order by age, name;

**join tow tables from the movie data set;

************subqueries in the where ******;
proc sql;
create table WonderIF
(Fname char(20)
,Lname char(20)
);
insert into WonderIF
values ("Elizabeth","Bennett")
values ("Mr.","Darcy")
values ("Colonel","Fitzwilliams")
values ("Hans","Solo")
values ("Adrain","Messinger")
values ("R2","D2")
;

proc sql;
create table BigList
(Fname char(20)
,Lname char(20)
);
insert into BigList
values ("Elizabeth","Bennett")
values ("Mr.","Darcy")
values ("Colonel","Fitzwilliams")
values ("Madam","X")
;

Proc SQL;
select distinct lname from BigList;
;

Proc SQL;
Select W.* from WonderIF as W
where W.Lname in (select distinct lname from BigList);
;

Proc SQL;
Select W.* from WonderIF as W
where W.Lname NOT in (select distinct lname from BigList);
;

Proc SQL;
Select W.* from WonderIF as W
where W.fname, W.Lname NOT in (select distinct fname, lname from BigList);
;

SUBQUERIES IN THE SELECT*****************************;
Proc SQL;
select O.name , O.age, O.sex, (select max(age) from MyClass) as MA
 , O.age-(select avg(age) from SAShelp.class as I
 where O.sex=I.sex) as Diff_from_Sex_avg_age
 ,(select avg(age) from MyClass as I
 where O.sex=I.sex) as Sex_avg_age
from MyClass as O;

Proc SQL;
select O.name , O.age, O.sex
 ,(select max(age) from MyClass group by sex) as MA
from MyClass as O;

**subqueries in the where;
find all the people with age =the max age**;
proc sql;
select * from MyClass as O /*Outer*/
where o.age = (select max(age) from MyClass);

proc sql;
select * from MyClass as O /*Outer*/
where o.age IN (select max(age) from MyClass
 group by sex);

proc SQL;
select * from MyClass as O /*outer*/
where 1 = (select count(*) from MyClass as I /*Inner*/
			where O.age=i.age) /*not group , so we return ONE line -
			 for obs that pass the where clause
			 you can pass several conditoins into the where (to filter obs)
			 but you only return a One by One (one row with one variable) */
order by age;

proc SQL;
select * from MyClass as O /*outer*/
where 1 NE (select count(*) from MyClass as I /*Inner*/
			where O.age=i.age) /*not group , so we return ONE line -
			 for obs that pass the where clause
			 you can pass several conditoins into the where (to filter obs)
			 but you only return a One by One (one row with one variable) */
order by age;

options ls=130;
proc sql _method _tree;
/*get the tallest boy and girl in each age group*/
select * from sashelp.class as O /*Outer*/
where o.height = (select max(Height) from SAShelp.CLass as I /*Inner*/
 where o.sex=i.sex and o.age=i.age)
order by sex, age; /*no comfusion with source of sex and age...they come from Outer*/

/**
Section __: Having
***/
Proc SQL;
Select name , age
from MyClass as Outer
having outer.age= (select Max(age)from MyClass as IMax
			where Outer.sex=IMax.sex)
 or Outer.age= (select Min(age)from MyClass as IMin
			where Outer.sex=IMin.sex)
order by sex, outer.age;
run;

/**
Section __: exists
***/
Proc SQL;
select name, sex, age
 from MyClass as outer
 where exists (Select * from MyClass as inner
 				where inner.age GE (outer.age+2)
				and inner.sex=outer.sex)
oeder by sex, age;

/**
Section __: Misc examples
***/
correlated sub-query in where*****;
proc SQL;
select age, count(*) as KidsInAgeGrp
from SAShelp.class
group by age; /*Asking for one line for every level of age*/

options nocerter;
proc SQL;
select * from sashelp.class as O /*outer*/
where 4 <= (select count(*) from sashelp.class as I /*Inner*/
			where O.age=i.age)
order by age;

proc sql;
select * from sashelp.class as O /*Outer*/
where o.age = (select Min(age) from SAShelp.CLass);

find all the people with age =the max age for their sex**;
proc sql;
select * from sashelp.class as O /*Outer*/
where o.age = (select max(age) from SAShelp.CLass as I /*Inner*/
 where o.sex=i.sex);

options ls=130;
proc sql _method _tree;
/*get the tallest boy and girl in each age group*/
select * from sashelp.class as O /*Outer*/
where o.height = (select max(Height) from SAShelp.CLass as I /*Inner*/
 where o.sex=i.sex and o.age=i.age)
order by sex, age; /*no comfusion with source of sex and age...they come from Outer*/

*****subqueries in the having **************************;

SubQueries.sas
/**
Section __: Reduce the number of obs in the data set: the slide is crowded
***/
data MyClass;
set SAShelp.class;
if mod(_N_,7) in (0,1,2,4,6,7) ;
label Name="Student name";
run;

/**
Section __: Select
***/
Options nocenter;
Proc SQL;
title "you can have correlated or un-correlated, sub-queries in the select";
title2 "They must return one value";
select name
 , sex
 ,(select max(sex) from SAShelp.class) as UnCorrQuery
 ,(Select avg(age) from SASHelp.class as Inner
		where inner.sex=outer.sex) as CorrQuery

from MyClass as Outer
;quit;

Options nocenter;
Proc SQL;
title "Queries can not return multiple value to the Select";
title2 "They must return one value";
select name
 , sex
 ,(select distinct(sex) from SAShelp.class) as UnCorrQuery

from MyClass as Outer
;quit;

/**
Section __: Having has a fee options
***/
Proc SQL;
title "returning one value is OK";
Select * , avg(age) as AvAge from MyClass as M
group by sex
having M.age = (select min(age) from MyClass where sex="M");
quit;

Proc SQL;
title "returning more than one value to an equals is NOT OK";
Select * , avg(age) as AvAge from MyClass as M
group by sex
having M.sex = (select distinct(sex) from MyClass);
quit;

Proc SQL;
title "returning more than one value to an in is OK";
Select * , avg(age) as AvAge from MyClass as M
group by sex
having M.sex in (select distinct(sex) from MyClass);
quit;

Proc SQL;
title "returning more than one value to an in is OK";
Select * , avg(age) as AvAge from MyClass as M
group by sex
having M.age in (select max(age) from MyClass group by sex);
quit;

Proc SQL;
title "returning more than one value to an EXISTS is OK";
Select * , avg(age) as AvAge from MyClass as M
group by sex
having name in (select name from MyClass where sex="M");
quit;

/**
Section __: Subqueries Where
***/
proc SQl;
title "A where subquery, with an IN, can return multiple values";
select name, age, sex
from MyClass
where name in(select name from MyClass group by sex having age=max(age));
run;

proc SQl;
title "A where subquery, with an =, can NOT return multiple values";
select name, age, sex
from MyClass as outer
where age =(select age from MyClass as inner group by sex having outer.sex=inner.sex);
run;

proc SQl;
title "A where subquery, with an =, can NOT return multiple values";
select name, age, sex
from MyClass as outer
where exists (select age from MyClass as Inner where inner.sex=outer.sex);
run;

proc SQl;
title "A where subquery, with an =, can NOT return multiple values";
select name, age, sex
from MyClass as outer
where exists (select name, age from MyClass as Inner where inner.name=outer.name and inner.sex NE outer.sex);
run;

proc SQl;
title "A where subquery, with an =, can NOT return multiple values";
select name, age, sex
from MyClass as outer
where exists (select name, age from MyClass as Inner where inner.name=outer.name and inner.sex eq outer.sex);
run;

/**
Section __: From with a subquery
***/
proc SQL;
select name, age, sex
	from(select * from MyClass where sex="M")
	order by age desc, name;
	run;

/**
Section __: examples from slides
***/
	Proc SQL NUMBER _method _tree;
 select O.name , O.age, O.sex
	 , (select Max(age) from MyClass) as MA
 , O.age-(select avg(age)
 from Myclass as I
 where O.sex=I.sex) as Diff_from_Sex_avg_age
 ,(select avg(age) from MyClass as I
 where O.sex=I.sex) as Sex_avg_age
 from MyClass as O
;
quit;
options ls=256;
	Proc SQL NUMBER;
	/*easier to read and faster cause of fewer subqueries*/
 select O.name , O.age, O.sex
	 , (select Max(age) from MyClass) as MA
 ,(select avg(age) from MyClass as I
 where O.sex=I.sex) as Sex_avg_age
 , O.age-calculated sex_avg_age as Diff_from_Sex_avg_age
 from MyClass as O
;
quit;

Supressing_Column_Headers.sas
/**
Section __: Reduce the number of obs in the data set: the slide is crowded
***/
data MyClass;
set SAShelp.class;
if mod(_N_,7) in (0,1,2,4,6,7) ;
label Name="Student name";
run;

options nocenter;
Proc SQl;
select name, age
from MyClass
where Sex ="F";

options nocenter;
Proc SQl;
select 	name Label='StuNme'
		, age Label='StuAge'
from MyClass
where Sex ='F';

********************************;
Proc SQl;
create table fancy as
select
name Label='StuNme'
, age Label='StuAge'
from MyClass
where Sex ="F";

proc print data=fancy label;
run;

*******************************;
Proc SQl;

select
name Label='#'
, age Label='#'
from MyClass
where Sex ='F';

*******************************;
Proc SQl;
create table fancy as select
name Label='#'
, age Label='#'
from MyClass
where Sex ='F';

proc print data=fancy ;
run;

proc print data=fancy label;
run;

Proc SQL;
select * from fancy;
run;

******************************;
Proc SQl;
select
name Label="#"
, age Label="#" format=6.3
from MyClass
where Sex ="F";

*******************************;
Proc SQl;
create table fancy as select
name
, age format=6.3
from MyClass
where Sex ='F';

proc print data=fancy label;
run;

Table_maintenance.sas
/**
Section __: Reduce the number of obs in the data set: the slide is crowded
***/
data MyClass;
set SAShelp.class;
if mod(_N_,7) in (0,1,2,4,6,7) ;
label Name="Student name";
run;

/**
Section __: counting percenatges of age-sex as percent of sex - counts
***/
*add via a query;
Proc SQL;
create table doubleBoys like Myclass;
insert into doubleboys
	select * from MyClass where sex="M";
insert into doubleboys
	select * from MyClass where sex="M";
proc print data=doubleBoys;
run;

*****Insert Rows ***************************;
Proc SQL;
create table doubleBoys like Myclass;
insert into doubleboys
	select * from MyClass where sex="M";
proc print data=doubleBoys;
run;

drop a row;
data MyClass;
set SAShelp.class;
if mod(_N_,7) in (0,1,2,4,6,7) ;
label Name="Student name";
run;

Proc SQL;
Delete
	from MyClass
	where name like "J%";
proc print data=MyClass;
run;

Add a column;
data MyClass;
set SAShelp.class;
if mod(_N_,7) in (0,1,2,4,6,7) ;
label Name="Student name";
run;
Proc SQL;
alter table MyClass
	add Extra Num label="Extra Column";	

proc print data=MyClass;
run;

Drop a column;
data MyClass;
set SAShelp.class;
if mod(_N_,7) in (0,1,2,4,6,7) ;
label Name="Student name";
run;
Proc SQL;
alter table MyClass
	drop Weight;	

proc print data=MyClass;
run;

Modify all rows with the same formula;
data MyClass;
set SAShelp.class;
if mod(_N_,7) in (0,1,2,4,6,7) ;
label Name="Student name";
run;
Proc SQL;
title "This code causes a warning";
Create table MyClass as
Select Name, sex, age*12 as age , height , weight
	from MyClass;	

proc print data=MyClass;
run;

**Modify rows with same formula **;
options nocenter;
data MyClass;
set SAShelp.class;
if mod(_N_,7) in (0,1,2,4,6,7) ;
label Name="Student name";
run;

Proc SQL;
update MyClass
	set age=age*12;
Proc Print data=MyClass;
var name age;
run;

**Modify rows with different formulas **;
options nocenter;
data MyClass;
set SAShelp.class;
if mod(_N_,7) in (0,1,2,4,6,7) ;
label Name="Student name";
run;

Proc SQL;
update MyClass
	set age=age*12
	where sex="M";
Proc Print data=MyClass;
var name age;
run;

**Modify rows with different formulas **;
options nocenter;
data MyClass;
set SAShelp.class;
if mod(_N_,7) in (0,1,2,4,6,7) ;
label Name="Student name";
run;
Proc SQL;
update MyClass
	set age=age*
		case age
			when 11 then 2
			when 12 then 10
			when 13 then 100
			else 1.0
		end;

Proc Print data=MyClass;
var name age;
run;

********modify a column***********;
options nocenter;
data MyClass;
set SAShelp.class;
if mod(_N_,7) in (0,1,2,4,6,7) ;
label Name="Student name";
run;
Proc SQL;
alter table MyClass
	modify age format=8.3
		 ,sex lable="Gender";

Proc Print data=MyClass label;
var name age sex;
run;

********modify a SEVERAL THINGS IN A TABLE***********;
options nocenter;
data MyClass;
set SAShelp.class;
if mod(_N_,7) in (0,1,2,4,6,7) ;
label Name="Student name";
run;
Proc SQL;
alter table MyClass
	add born_In num
	drop weight
	modify age format=8.1
		 ,sex label="M or F";
	update MyClass
	set born_in=Year(today())-age;
select * from MyClass;
quit;

Proc Print data=Myclass;
run;

Tables_creating_N_Updating.sas
/**
Section __: Reduce the number of obs in the data set: the slide is crowded
***/
data MyClass;
set SAShelp.class;
if mod(_N_,7) in (0,1,2,4,6,7) ;
label Name="Student name";
run;

proc SQL _method _tree;
select left(put(sum(sex="F"),2.0)) as FemCount
	 ,left(put(sum(sex="M"),2.0)) as MaleCount
 ,avg(height) as AllAvgHeight
 ,avg(age) as AllAvgAge
 ,sum(height*(sex="F"))/sum(sex="F") as FemAvgH
	 ,sum(height*(sex="M"))/sum(sex="M") as MaleAvgH
 ,sum(Age*(sex="F"))/sum(sex="F") as FemAvgAge
	 ,sum(Age*(sex="M"))/sum(sex="M") as MaleAvgAge
into :FemCount ,:MaleCount
 ,:AllAvgHeight ,:AllAvgAge
 ,:FemAvgH ,:MaleAvgH
 ,:FemAvgAge ,:MaleAvgAge
 from MyClass
;
%put _user_;
title1 "AllAvgAge=&AllAvgAge and AllAvgHeight=&AllAvgHeight";
title2 "FemAvgAge=&FemAvgAge and MaleAvgAge=&MaleAvgAge";
title3 "FemAvgH=&FemAvgH and MaleAvgH=&MaleAvgH";
title4 "FemCount=&FemCount and MaleCount=&MaleCount";

%put _user_;
title1 "AllAvgAge=&AllAvgAge & FemAvgAge=&FemAvgAge & MaleAvgAge=&MaleAvgAge" ;
title2 " AllAvgHeight=&AllAvgHeight & FemAvgH=&FemAvgH & MaleAvgH=&MaleAvgH";
title3 "FemCount=&FemCount and MaleCount=&MaleCount";

/**
Section __:
***/
Proc SQL;
create table sample
	(Phys_ID Char(5)
 , enroll_dt num
		Informat=date7.
		Format =date12.
 ,Rx num
);
insert into sample
values ("00001","17oct91"d,10)
values ("00002","17Sep91"d,9) ;
Proc SQl;
select * from Sample;

proc SQl;
 create table second like MyClass;
 run;
 Proc SQL;
 describe table Second;
 run;

 proc SQL;
 insert into second
 Select * from MyClass where age in(11,12);
 run;
 Proc SQL;
 select name, age from Second;

 Proc SQL;
 insert into Second
 Values ("Shirley","F",55,58,.);
 run;

 Proc SQL;
 Select * from Second
 where age GE 12;
 run;

Useful_SQL_optionos.sas

Data ShowFlow;
infile datalines truncover firstobs=2;
input @1 charVarL10 $char10. @15 charVarL20 $char20. @41 charVarL35 $char35.;
datalines;
1234567890123456789012345678901234567890123456789012345678901234567890
A234567890 A6789012345678901234 A1234567890123456789012345678901234
B234567890 B6789012345678901234 B1234567890123456789012345678901234
C234567890 C6789012345678901234 C1234567890123456789012345678901234
;
Proc SQL Flow=15;
select * from ShowFlow;

/**
Section __: Reduce the number of obs in the data set: the slide is crowded
***/
data MyClass;
set SAShelp.class;
if mod(_N_,7) in (0,1,2,4,6,7) ;
run;

options nocenter;
Proc SQL inobs=6;
select *, avg(height)
 from MyClass;
run;

options nocenter;
Proc SQL outobs=6;
select *, avg(height)
 from MyClass;
run;

Proc SQL;
create index GenAge on MyClass(sex, age);
quit;

options msglevel=I;
Proc SQL ;
select name, sex, age
 from MyClass
 where Sex="M" and age=14;
run;

Proc SQL feedback;
select *
 from MyClass
 where Sex="M" and age=14;
run;

Proc SQL number double;
select *
 from MyClass
 where Sex="M" and age in(11,12,13);
run;

ViewsNStuff.sas
/**
Section __: Reduce the number of obs in the data set: the slide is crowded
***/
data MyClass;
set SAShelp.class;
if mod(_N_,7) in (0,1,2,4,6,7) ;
label Name="Student name";
run;

options nocenter;
proc SQL;
Create View just_guys as
select name, sex, age, Weight/2.2 as Wt_KG
from SAShelp.class as c
where sex="M";
;

proc print data=just_guys;
run;

Proc Gchart data=just_guys;
pie age /discrete;
run;

Proc univariate data=just_guys;
run;

proc sql;
select * from just_guys;
run;

Libname OneSpot "C:\temp";
Libname ViewLoc "C:\Perm_Views";
data OneSpot.PermClass;
set MyClass;
run;

**************************;
Proc SQL;
create view ViewLoc.Metric as
select 	 name
		,Weight/2.2 as Wt_Kg
		,height*2.25 as Hgt_cm
		from PermLoc.PermClass
		using libname PermLoc "C:\temp";

libname permLoc clear;
Proc print data=ViewLoc.Metric;
run;

